
Internet Appendix for

“Asset Price Dynamics with Limited Attention”

This Internet Appendix contains the notes on MLE estimation and additional figures. References to tables and
figures may correspond to those the main document. Note, to avoid confusion the figures’ numbering in this
Internet Appendix starts where their numbering in the main text left off.

IA.A Details of the maximum likelihood estimation (MLE)

IA.B Details of the block bootstrap procedure for obtaining standard errors
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Figure 6: Large stocks only
Figure 7: Large stocks, upper-half only
Figure 8: Large stocks, lower-half only
Figure 9: Medium stocks only
Figure 10: Small stocks only

IA.F MLE results with daily / weekly / monthly slow investors

IA.G Parameter estimates based on bootstrap means

IA.H Empirical and model-implied moments with confidence bands

1



A Details of the maximum likelihood estimation (MLE)

The maximum-likelihood estimation is implemented in Python’s statsmodels (Seabold and Perktold, 2010).
More specifically, our code uses Chad Fulton’s statespace model within this software module. After acceptance
the code submitted with the revision will be posted online together with simulated sample to run it on. The code
includes a simplified version that is easier to parse and can serve as a starting point for researchers interested in
estimating related models. The paper’s data falls under a nondisclosure agreement with the NYSE. Numerous
researchers who were visiting economists at the NYSE have had access to the data.

In the remainder of the section we calibrate the model to find reasonable starting values for the steepest-
ascent algorithm used to maximize the likelihood. A high-level summary of the way starting values are set is
that we first set the correlation of dividend shocks and target portfolios to zero (i.e., ρ = 0) to sequentially
pick parameter values. We then pick the correlation at a level that would explain potential excess negative
correlation between dividend shocks and market-maker inventories in the data.

If ρ is assumed to be zero, then all remaining parameters can then be solved sequentially by matching
several observed “identifying” cross-autocovariances as follows:

1. First solve for retail risk-mass (µdr, µmr, and µqr) based on retail order flows. These parameters are
identified solely off of the autocovariance function for retail order flow.

2. Then, given these estimates, solve for gap-sensitivity of market-maker inventories (βM ) which is identified
through a cross-autocovariance between market-maker inventories and retail order flows.

3. All these estimates are unlikely to fit the autocovariance of market-maker inventories. The differential
between the implied autocovariance based on retail flows and the observed autocovariance is used to
identify the risk-mass of slow institutions (µdi, µmi, and µqi).

4. Now that all trade-data parameters are identified, we involve price data to solve for gap-sensitivity of price
pressure (βw) through the first-order autocovariance of market returns (which is preferred over return
variance as it removes dependence on the thus far unknown σw).

5. Finally, these parameters imply a variance in returns. The extent to which the observed return variance
exceeds this variance identifies dividend risk (σw).

The remainder of the section will describe all these steps in full detail. All derivations are based on the closed-
form expressions for the (multivariate) autocovariance function (that includes variance) of model variables in
(63)-(64) .

Starting value for retail risk-mass: µdr, µmr, and µqr. Retail-flow autocovariance does not depend
on any parameter other than retail risk-mass. Picking three autocovariances should therefore identify the three
retail risk-mass parameters. We pick the autocovariance at lag one, five, and 20.51 Picking element (8,8) of the
autocovariance function in (64) yields the following expression:

cov (RetFlowt,RetFlowt−n) =

1(1×3)

(
I3 − e−Λr

)
e−(n−1)Λrcov (Grt,RetFlowt) .

(69)

51These frequencies are chosen because they are visible in Figure 1 and enable an reasonable fit to the curvatures of
the lines in Figure 1 at the optimization’s starting values.
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The contemporaneous covariance between Grt and RetFlowt is in row four through six and column eight of
var (Yt) in (63). The corresponding two terms on the right-hand side of (63) are

e−Λrdiag
(
µ2
dr

2λd

µ2
mr

2λw

µ2
qr

2λm

) (
I3 − e−Λr

)
1(3×1) (70)

and (
0(1×3) −1(1×3) 0(1×4) 1(1×3)

)
var (εt)

0(3×3)

I3
0(7×3)

 , (71)

respectively. Therefore the model-implied autocovariance is:

cov (RetFlowt,RetFlowt−n) =
∑

j∈{d,m,q}

(
1− e−λj

)
e−(n−1)λj×

(
e−λj

(
1− e−λj

)
2λj

+

(
1− e−λj

λj
− 1− e−2λj

2λj

))
µ2
jr.

(72)

Note that (72) evaluated at n ∈ {1, 5, 20} yields a system with three equations and three unknowns with
boundary conditions because risk-mass parameters have to be non-negative. One way to find reasonable risk-
mass estimates is to solve the following least-squares minimization: µ̂dr

µ̂mr
µ̂qr

 =
(

argminx(3×1)≥0
(Anx− b)> (Anx− b)

) 1
2

, (73)

where b is a 3×1 column vector with observed retail-flow autocovariances at lags n ∈ {1, 5, 20}, respectively, and
An is a matrix with as row labels the frequencies f ∈ {d,m, q} and as a column labels the lags n ∈ {1, 5, 20}.
Element (f, n) in An equals the coefficient of µ2

fr in (72) for lag n. As the matrix An is well conditioned we

solve the argmin part in (73) simply by taking x0 = A−1
n b. Should any element of x0 be negative we set it to

zero ex-post so as to ensure risk-mass starting values are non-negative.52

Starting value gap-sensitivity MMInv : βM . The starting values µ̂dr, µ̂mr, and µ̂qr along with the
following autocovariance term identify βM :

cov (RetFlowt,MMInvt−1) =

1(1×3)

(
I3 − e−Λ

)
e−(1−1)Λdiag

(
µ̂2
dr

2λd

µ̂2
mr

2λw

µ̂2
qr

2λm

)
βM1(3×1).

(74)

β̂M therefore is:

β̂M =
cov (RetFlowt,MMInvt−1)

1(1×3) (I3 − e−Λ) diag
(
µ̂2
dr

2λd

µ̂2
mr

2λw

µ̂2
qr

2λm

)
1(3×1).

(75)

Note that the beauty of picking the cross-autocovariance of market-maker inventories and retail flows is that
one does not need to know the risk mass of slow institutions as their target portfolio changes are assumed to
be orthogonal to those of retail investors.53

52In the code we use very small values instead of zero to avoid a singular prediction error covariance matrix in the
Kalman filter.

53Note that β̂M in (75) equals the ratio of the observed covariance and the model-implied covariance assuming βM is
one. This insight is used in the code to maximize code efficiency. This trick is used for several starting-value expressions.

3



Starting value for the risk mass of slow institutions: µdi, µmi, and µqi. The identification of
the risk masses of slow institutions is in the extent to which market-maker inventory autocovariance exceeds
what the model predicts it to be solely based on µ̂dr, µ̂mr, µ̂qr, and β̂M (i.e., assuming risk mass to be zero for
slow institutions). More specifically, the model-implied autocovariance of market-maker inventories at lag n is
(using (63)):

cov (MMInvt,MMInvt−n) = βM1(1×6)e
−Λe−(n−1)Λcov (MMInvt, Gt)βM1(6×1) =∑

j∈{d,m,q}

β2
Me
−nλj µ

2
ji + µ̂2

jr

2λj
.

(76)

At this point the approach is similar to the one we used to identify the risk mass of retail investors. In other
words, utilizing (76) we solve for risk masses in the same way as we did based on (73): µ̂di

µ̂mi
µ̂qi

 =
(

argminx(3×1)≥0
(An (x− c)− b)> (An (x− c)− b)

) 1
2

, (77)

where b is a 3× 1 column vector with observed inventory autocovariance at lags n ∈ {1, 5, 20}, respectively, and
An is a matrix with as row labels the frequencies f ∈ {d,m, q} and as a column labels the lags n ∈ {1, 5, 20}.
Element (f, n) in An equals the coefficient of µ2

fr in (76) for lag n and

c =
(
µ̂2
dr

2λd

µ̂2
mr

2λm

µ̂2
qr

2λq

)>
. (78)

Now that we have identified all risk-masses µ̂jk with j ∈ {d,m, q}, k ∈ {i, r} along with β̂M , we add price data
to the trade data used thus far to identify the remaining parameters βw and σw.

Starting value gap-sensitivity price pressure: βw. With all parameters calibrated thus far βw can
be calibrated by matching the first-order autocovariance in return. Note that this object does not depend
on w and therefore removes dependence on σw which is thus far unknown. The mathematical expression for
this autocovariance is in principle available but involves long mathematical expressions. Since the observed
covariance is affine in the model-implied covariance assuming βw = 1 with zero intercept and a coefficient of β2

w.
This allows us to calibrate βw as follows (yielding the exact same result as computing the analytic expression
but more easily expressed and coded, see also footnote 53):

β̂w =

(
cov (Returnt,Returnt−1)

σ̂Return,Returnt−1

) 1
2

, (79)

where σ̂Return,Returnt−1
denotes the model-implied covariance between Returnt and Returnt−1 on the assumption

that βw is one.54

54In practice, one could set βw as the square root of the average of multiple ratios based on different lag values. In the
code, we used 1, 5, and 20 to have a smoothen the calibrated value. This could also be done when calibrating the other
parameters but in our application the returns variable was more noisy than others and we therefore only implemented
it here.
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Starting value dividend risk: σw. The variance of returns along identifies the remaining parameter σw
given starting values for all other parameters:

var (Returnt) =

β̂w1(1×6) (rI6 + Λ)
−1 (

I6 − e−Λ
)

var (Gt)
(
I6 − e−Λ

)
(rI6 + Λ)

−1
1(6×1)β̂w+

β̂w1(1×6) (rI6 + Λ)
−1

diag
(

1−e−2λd

2λd
µ̂2
di . . . 1−e−2λm

2λm
µ̂2
mr

)
(rI6 + Λ)

−1
1(6×1)β̂w+

σ2
w

(80)

and therefore

σ̂w =

var (Returnt)− β̂2
w

∑
j∈{d,m,q

1− e−λj

λj (r + λj)
2

(
µ̂2
ji + µ̂2

jr

) 1
2

. (81)

Starting value correlation dividend and target portfolio innovations: ρ. Finally, ρ is estimated
as:

ρ̂ =
cov (MMInv,Return)− σ̂MMInv,Return

σ̂MMInvσ̂w
, (82)

where σ̂MMInv,Return denotes the model-implied covariance between MMInv and Return on the assumption that
ρ is zero. The same goes for σ̂X which denotes the model-implied volatility of X. Note that the denominator
is σ̂w instead of σ̂Return as ρ pertains to dividend innovations.
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B Details of the block bootstrap procedure

After removing the market-wide components from each of our three data series, the contemporaneous pairwise
correlations (across firms) are 0.034, 0.009, and 0.036 for market maker inventories, retail flows, and returns,
respectively. To account for remaining correlation due to industry effects, we implement a block bootstrap
approach to estimate standard errors.

Each of the 689 firms in our sample is mapped into one of 30 industries based on data from Ken French’s
website. We then draw one firm from each industry (with replacement), collect these firms’ data into a single
sample, and estimate the model’s parameters. The process is repeated 100 times so that we end with 100
estimated values for each of our parameters. We calculate the standard deviation of the 100 estimated values
and report this value as standard errors in Table 2.

For each draw, we further calculate all table and figure values and then use these values to calculate standard
deviations. Tables and bar figures show standard errors in parentheses. Line figures show confidence bands set
at ±1.96×the standard deviation (standard error).

Due to the smaller sample sizes (for each of the 100 estimations), the starting values are constrained to [90%,
110%] of full-sample starting values when considering one of the three size-based terciles (large, medium, and
small). For every draw in the bootstrap, we start with the same procedure as described in Internet Appendix A.
However, due to the smaller sample, the original starting values can be noisy (especially for σw). Rather than
come up for a new method for the smaller sample size, we limit the starting values to be in the [90%, 110%]
range of those from the full-sample values for the three size-based terciles. When we split one of the size-based
terciles in half (large-upper and large-lower) the starting values are constrained to be in the [80%, 120%] range
of those from the full-sample values

To show that our procedure can produce unbiased estimates of parameters, Internet Appendix G recreates
Table 2 using the average of each parameter’s 100 draws. Standard errors remain unchanged from those shown
in Table 2.
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C Model-implied autocorrelations for lower-frequency returns

The N -period return (used for lower frequency returns such as monthly or quarterly) is:

rm,t = pt − pt−N (83)

where t runs over days and it is assumed that there are N work days in a month. The price pt consist of a
martingale component mt with daily innovations wt plus a friction-induced pricing error st. The return therefore
becomes:

rm,t = mt −mt−N + st − st−N = (wt−1 + . . .+ wt−N ) + st − st−N . (84)

The variance of monthly returns therefore is:

σ2
rm,t = Nσ2

w + 2σ2
s − 2ρs,Nσ

2
s (85)

where ρs,N is the N lag autocorrelation in the pricing error. The first-order autocovariance of monthly return
is:

Cov (rm,t, rm,t−N ) = −σ2
s + 2ρs,Nσ

2
s − ρs,2Nσ2

s . (86)

Therefore, the first-order autocorrelation in monthly return is:

− (1− 2ρs,N + ρs,2N )σ2
s

Nσ2
w + 2 (1− ρs,N )σ2

s

. (87)

The pricing error at any time t is defined as:

st = −βw (rI6 + Λ)
−1
Gt (88)

where the variance of Gt is in (62). The covariance of st and st−j with j > 0 is:

Cov (st, st−N ) = βw (rI6 + Λ)
−1
e−Λe−(j−1)ΛΣG (rI6 + Λ)

−1
β>w (89)

= βw (rI6 + Λ)
−1
e−jΛΣG (rI6 + Λ)

−1
β>w

and
Var (st) = βw (rI6 + Λ)

−1
ΣG (rI6 + Λ)

−1
β>w . (90)
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D Daily target portfolio changes

The variance of daily total target-portfolio changes of large investors are:∫ ∆t

0

µ>µdu. (91)

As the units of both market-maker inventories and retail flows are in million dollar and ∆t is a day, this implies
that the standard deviation of the total daily target portfolio changes is: ∑

k∈{d,m,q}

µ2
ki + µ2

kr

 1
2

million dollar. (92)
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E MLE results for size-based sub-samples

The following five pages show the results of our MLE for different sized-based sub-samples. We first

divide our sample into three terciles (“Large”, “Medium”, and “Small”). In addition, the “Large”

tercile is divided in half into “Large-Upper” and “Large-Lower”. The underlying parameter estimates

are shown in Table 2 from the main paper. The figures compare with Fig 2 from the main paper.
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Figure 6. MLE results for large stocks only. Similar to Figure 2 except for the sample of large
stocks only.
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Figure 7. MLE results for large stocks, upper-half only. Similar to Figure 2 except for the
sample of large stocks, upper-half only.
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Figure 8. MLE results for large stocks, lower-half only. Similar to Figure 2 except for the
sample of large stocks, Lower-half only.
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Figure 9. MLE results for medium stocks only. Similar to Figure 2 except for the sample of
medium stocks only.
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Figure 10. MLE results for small stocks only. Similar to Figure 2 except for the sample of small
stocks only.
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F MLE results with daily / weekly / monthly slow investors

Version. This table presents the maximum likelihood parameter estimates and their standard er-
rors. We consider “All” stocks as well three size-based sub-samples labeled “Large”, “Medium”, and
“Small”. Subscripts: “d” daily; “w” weekly; “m” monthly; “i” slow institutional investors; “r” slow
retail investors. Idiosyncratic noise in dividends (σw); market-maker inventories (σeM ); and retail flows
(σer); Standard errors are shown in parentheses. The stars (∗/∗∗/∗∗∗) indicate statistical significance
at a 10%, 5%, and 1% level, respectively.

All Large Medium Small

Panel A: Risk masses of slow institutional investors
µdi 154

(3.36)

∗∗∗ 381
(17.6)

∗∗∗ 55.0
(2.32)

∗∗∗ 9.50
(0.32)

∗∗∗

µwi 0.01
(0.90)

0.01
(4.15)

0.01
(0.50)

0.17
(0.10)

µmi 28.9
(0.65)

∗∗∗ 65.9
(3.10)

∗∗∗ 8.97
(0.39)

∗∗∗ 2.97
(0.10)

∗∗∗

Panel B: Risk masses of (slow) retail investors
µdr 1.65

(0.003)

∗∗∗ 3.03
(0.008)

∗∗∗ 0.46
(0.002)

∗∗∗ 0.16
(0.001)

∗∗∗

µwr 0.010
(0.03)

0.012
(0.11)

0.010
(0.02)

0.170
(0.005)

∗∗∗

µmr 5.23
(0.01)

∗∗∗ 9.78
(0.05)

∗∗∗ 1.55
(0.01)

∗∗∗ 0.56
(0.005)

∗∗∗

Panel C: Deep parameters
βM 0.0089

(0.002)

∗∗∗ 0.0066
(0.0003)

∗∗∗ 0.0100
(0.0004)

∗∗∗ 0.0279
(0.0009)

∗∗∗

βw 0.0935
(0.0025)

∗∗∗ 0.0426
(0.0023)

∗∗∗ 0.288
(0.0141)

∗∗∗ 0.720
(0.0333)

∗∗∗

Panel D: Volatility related to returns, market-maker inventories, and retail flows
σw 237

(0.33)

∗∗∗ 217
(0.54)

∗∗∗ 233
(0.58)

∗∗∗ 262
(0.53)

∗∗∗

σeM 0
(0.011)

0
(0.014)

0
(0.0008)

∗∗∗ 0
(0.0001)

∗∗∗

σer 1.58
(0.0007)

∗∗∗ 2.53
(0.022)

∗∗∗ 0.50
(0.0004)

∗∗∗ 0.21
(0.0002)

∗∗∗

Panel E: Shared component
ρ −0.210

(0.0011)

∗∗∗ −0.199
(0.0018)

∗∗∗ −0.208
(0.002)

∗∗∗ −0.245
(0.0022)

∗∗∗

# of stocks 689 230 229 230
# of obs 1,206,935 403,971 402,169 400,795
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G Bootstrap point estimates with bootstrap standard errors

This table presents parameter estimates equal to the mean of our bootstrap estimates. We con-
sider “All Stocks” as well as four sized-based sub-samples labeled “Large-Upper,” “Large-Lower,”
“Medium,” and “Small”. Subscripts: “d” daily; “m” monthly; “q” quarterly; “i” slow institutional
investors; “r” slow retail investors. Idiosyncratic noise in dividends (σw); market-maker inventories
(σeM ); and retail flows (σer); Standard errors are shown in parentheses and are based on a block
bootstrap methodology as discussed in Internet Appendix B. The stars (∗/∗∗/∗∗∗) indicate statistical
significance at a 10%, 5%, and 1% level, respectively.

All Large Stocks Medium Small
Stocks Upper-Half Lower-Half Stocks Stocks

Panel A: Risk masses of slow institutional investors
µdi 149

(13.9)

∗∗∗ 567
(98.4)

∗∗∗ 114
(1.13)

∗∗∗ 57.5
(3.01)

∗∗∗ 13.3
(1.23)

∗∗∗

µmi 25.1
(2.32)

∗∗∗ 79.5
(13.1)

∗∗∗ 14.8
(1.44)

∗∗∗ 8.57
(0.51)

∗∗∗ 3.40
(0.45)

∗∗∗

µqi 7.53
(0.69)

∗∗∗ 37.5
(6.65)

∗∗∗ 6.75
(0.18)

∗∗∗ 2.04
(0.16)

∗∗∗ 0.49
(0.50)

Panel B: Risk masses of (slow) retail investors
µdr 1.59

(0.08)

∗∗∗ 3.89
(0.17)

∗∗∗ 1.05
(0.049)

∗∗∗ 0.475
(0.03)

∗∗∗ 0.164
(0.04)

∗∗∗

µmr 4.98
(0.37)

∗∗∗ 12.3
(1.22)

∗∗∗ 3.23
(0.28)

∗∗∗ 1.38
(0.10)

∗∗∗ 0.69
(0.11)

∗∗∗

µqr 1.95
(0.19)

∗∗∗ 6.74
(1.25)

∗∗∗ 2.46
(0.38)

∗∗∗ 0.858
(0.07)

∗∗∗ 0.067
(0.06)

Panel C: Deep parameters
βM 0.0083

(0.0007)

∗∗∗ 0.0045
(0.0007)

∗∗∗ 0.0098
(0.0003)

∗∗∗ 0.0097
(0.0005)

∗∗∗ 0.0204
(0.0019)

∗∗∗

βw 0.0959
(0.037)

∗∗ 0.048
(0.007)

∗∗∗ 0.0789
(0.050)

0.335
(0.117)

∗∗ 0.569
(0.409)

Panel D: Volatility related to returns, market-maker inventories, and retail flows
σw 220

(17.4)

∗∗∗ 147
(11.1)

∗∗∗ 219
(18.9)

∗∗∗ 214
(16.7)

∗∗∗ 255
(19.8)

∗∗∗

σeM 0.351
(0.080)

∗∗∗ 1.37
(0.133)

∗∗∗ 0.477
(0.042)

∗∗∗ 0.168
(0.040)

∗∗ 0.001
(0.001)

σer 1.60
(0.034)

∗∗∗ 3.45
(0.074)

∗∗∗ 1.12
(0.021)

∗∗∗ 0.509
(0.01)

∗∗∗ 0.210
(0.01)

∗∗∗

Panel E: Shared component
ρ −0.229

(0.022)

∗∗∗ −0.234
(0.015)

∗∗∗ −0.276
(0.020)

∗∗∗ −0.214
(0.024)

∗∗∗ −0.256
(0.039)

∗∗∗

# of stocks 689 115 115 229 230
# of obs 1,206,935 201,984 201,987 402,169 400,795
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H MLE results with 95% confidence bands
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Figure 11. Confidence bands for model-implied values. The following figure compares with

Fig 2 from the main paper but contains 95% confidence bands.
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