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Asset Price Dynamics with Limited Attention

We identify long-lived pricing errors through a model in which inattentive investors arrive stochas-

tically to trade. The model’s parameters are structurally estimated using daily NYSE market-maker

inventories, retail order flows, and prices. The estimated model fits empirical variances, autocorre-

lations, and cross-autocorrelations among our three data series from daily to monthly frequencies.

Pricing errors for the typical NYSE stock have a standard deviation of 3.2 percentage points and a

half-life of 6.2 weeks. These pricing errors account for 9.4%, 7.0%, and 4.5% of the respective daily,

monthly, and quarterly idiosyncratic return variances.



1 Introduction

How much do observable stock prices deviate from fundamental values? And when they do, how long

do these “pricing errors” last? Financial economists have long known that asynchronously arriving

(or inattentive) investors could be the root cause of these errors.1 The pricing errors compensate

market makers who supply liquidity by stepping in to match buyers and sellers across time. In a

complementary view, the interaction of liquidity supply and pricing errors produces a pattern of

predictable return reversals.2 Short-run reversals are a major focus of the market microstructure

literature, while lower-frequency reversals are typically studied in the asset pricing literature. A goal

of our paper is to link these two literatures by studying the magnitude of pricing errors for typical

New York Stock Exchange (NYSE) stocks at frequencies from a day to a quarter. We find that pricing

errors for the typical NYSE stock have a standard deviation of 3.2 percentage points and a half-life

of 6.2 weeks. They account for 9.4%, 7.0%, and 4.5% of the respective daily, monthly, and quarterly

idiosyncratic return variances.

As alluded to above, a fundamental goal of financial economics is to understand the extent to

which a stock’s price (or change in a stock’s price) reflects a company’s fundamental value (or change

in value). When an observed price deviates from a company’s fundamental value, financial economists

seek to understand why and where this “noise” or “pricing error” comes from. Research into noise

and inferences about firm values go back at least as far as the 1960s. Fama (1970, 1991) provides

concise reviews.3

To date, pricing errors have been studied with one of at least three different approaches. First,

using only price data, stocks’ observed prices can be decomposed into a “fundamental component”

and a “transitory component” with sufficient identifying assumptions.4 However, a purely econometric

approach provides few insights into how financial markets work and/or the trade-offs faced by economic

1Abel, Eberly, and Panageas (2007) and Abel, Eberly, and Panageas (2013) provide microfoundations for how inat-
tention arises endogenously for individual investors. Biais, Hombert, and Weill (2014) model preference uncertainty to
capture inattention of institutional investors.

2Examples of such price reversals can be found in Grossman and Miller (1988), Jegadeesh (1990), Lehmann (1990),
Campbell, Grossman, and Wang (1993), Llorente et al. (2002), Nagel (2012), and others.

3Investor welfare provides further impetus for studying pricing errors—see Brennan and Wang (2010). Our pricing
error estimates for the magnitude and duration of noise can be used to measure the biases in asset pricing tests shown
in Asparouhova, Bessembinder, and Kalcheva (2010, 2013).

4For examples see Roll (1984), Poterba and Summers (1988), Cochrane (1994), and Brennan and Wang (2010).
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agents. Second, infrequent events with large supply shocks can help identify times when pricing errors

may appear—see Duffie (2010) for examples. Third, an economic theory model and data on liquidity

providers’ inventories can be used to identify pricing errors. We follow such an approach in this paper.

In our model, different classes of investors have different exposures to private-value shocks. The shocks

induce hedging motives to trade and the shocks net to zero across investors (e.g., holdings may change,

but do not affect prices if there are no frictions). Our model introduces a friction: some investors

continually monitor the stock market while others are inattentive and arrive infrequently to trade.

The presence of the infrequent investors gives rise to the long-lived pricing errors that compensate

financial intermediaries for bridging the gap between the needs of frequent and infrequent investors.5

If infrequent investors arrive over horizons longer than a day, the pricing errors can last for months.

We identify long-lived pricing errors through an economic model. We show how to transform our

continuous-time model’s theoretical results so that its parameters can be estimated using discretely-

sampled data. Our data consist of daily NYSE market-maker inventories, retail order flows, and

prices. We structurally estimate the pricing errors’ magnitude, their duration, as well as deeper

economic quantities, such as the risk-bearing capacities of different investor classes. The model yields a

flexible form for the pricing errors’ data generating process. Inattentive investors can cause long-tailed

autocorrelation of market-maker inventories that allows us to more precisely estimate slowly-decaying

pricing errors.

Using our daily NYSE data on prices, market-maker inventories, and retail trading, we perform

maximum likelihood estimation (MLE) to recover the model’s underlying parameters. We compare the

empirical and model-implied variances and autocorrelations (including cross-autocorrelations among

these variables) contemporaneously and with lags ranging from a day to a month. The estimated

model matches all the relevant dynamic relations, both in terms of signs and magnitudes. This is

noteworthy because the model is only a single friction away from a standard asset-pricing model.

The model’s rich and long-lasting autocorrelation structure for prices ties together results tradi-

tionally in the microstructure literature (daily) with those in the asset pricing literature (monthly and

5Hendershott and Seasholes (2007) and Hendershott and Menkveld (2014) link market-maker inventories to return
reversals. Hendershott and Menkveld (2014) uses a discrete-time model with supply and demand shocks arriving inde-
pendently each period. Their model results in pricing errors following an autoregressive process—specifically, an AR(1).
In contrast, our model produces richer pricing error dynamics that better match empirical autocorrelation patterns.
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quarterly). Our results show that “noise” is not solely a short-term microstructure effect. Instead,

this paper shows that there are significant pricing errors in monthly data—the data most commonly

used in the asset pricing literature. Below, we expand our discussion of this paper’s approach and its

contributions.

The model’s strength is its simplicity and versatility. For example, our model is invariant to

the sampling frequency. Section 3 shows how one can convert the implied model dynamics from

continuous time to discrete sampling times, where the latter can span a second, an hour, a day, a

month, or a quarter. Our model, therefore, can be used by both monthly asset pricers and sub-

millisecond microstructure researchers. In addition, allowing for multiple classes of slow investors

(who operate at different frequencies) turns out to be a crucial feature when fitting NYSE price and

trading dynamics. In particular, the autocorrelation in daily idiosyncratic returns6 decays too slowly

to be explained using only a single class of slow investors. We find a good fit using three classes of slow

investors: one with investors who arrive daily (on average), one with investors who arrive monthly,

and a third with investors who arrive quarterly.

The monthly and quarterly inattentive investors lead to the slowly decaying pricing errors found

in the autocorrelations of NYSE returns. The presence of these classes is also the main reason why

pricing errors are sizeable. We estimate that prices deviate from fundamental values by 3.2 percentage

points with a half-life of 6.2 weeks.

The slow decay in pricing errors can further explain a (perhaps) puzzling empirical feature of NYSE

data: first-order return autocorrelations can become more negative when sampled at lower frequencies.

Table 1 illustrates this puzzle for both a classic and a modern sample of U.S. equities. Campbell,

Lo, and MacKinlay (1997) find that stock-specific returns are more negatively autocorrelated at a

bi-monthly frequency than at a monthly frequency for their 1962-1994 sample. In our 1999-2005

sample, we find a similar pattern when comparing daily, monthly, and bi-monthly returns. The table

further shows that our model can produce such a pattern. The model-implied autocorrelations become

increasingly more negative as one moves from daily to monthly and then to bi-monthly returns. The

intuition for why such patterns can occur is presented in Appendix A. If pricing-error persistence

is large, such errors will wash out in returns (at high frequencies) as the first-order autocorrelation

6All returns in the paper are idiosyncratic. Hereafter, to ease exposition we typically refer to them simply as “returns.”
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Table 1
Stock return autocorrelations at various frequencies

This table presents first-order autocorrelations of individual stock returns. It illustrates that longer
period returns can have more negative first-order autocorrelations. The Campbell, Lo, and MacKin-
lay (1997, p.73, Table 2.7) results are based on a mapping from their variance ratios to first-order
autocorrelations (see their Eq.2.8.1 on p. 69). Their results are based on individual returns for 411
U.S. stocks. Our data are more recent and based on idiosyncratic returns for 689 U.S. stocks. The
model-implied autocorrelations are based on estimates presented in Section 4.

Period Daily Monthly Bi-monthly

Campbell, Lo, & MacKinlay 1962-1994 −0.03 −0.04

Our data 1999-2005 −0.02 −0.04 −0.08

Model Implied 1999-2005 −0.01 −0.04 −0.05

will tend to zero. At low frequencies, the errors will decay enough to cause a negative first-order

autocorrelation. This insight should caution researchers not to conclude that prices are “efficient”

when seeing negligible first-order autocorrelation in returns sampled at high frequencies. Our results

suggest it is very difficult to separate pricing errors from fundamental values using only observable

prices in a finite sample. Trading data can help avoid such difficulties.

Our structural model estimation yields novel insights in four broad areas. First, the model requires

a range of slow investor classes in order to achieve a reasonable fit: we use daily slow investors, monthly

slow investors, and quarterly slow investors. These classes feature both slow institutional and retail

investors. Institutions are more prevalent at all three frequencies.7 While retail investors are a small

part of the market, they make up a relatively larger part of the monthly and quarterly slow investors.8

These observations are based on our estimates of the total masses of private-value shocks, referred to

as “risk masses.” This term emphasizes that it is the product of the mass of investors times the size of

7Since we have market-maker inventories and retail trades, institutional trades are defined by a market clearing
constraint. Lakonishok, Shleifer, and Vishny (1992), measure the size of the institutional imbalance and its relation
to current price movements. Other papers study interactions of institutional and retail trading—see papers such as
Nofsinger and Sias (1999) and Griffin, Harris, and Topaloglu (2003). Our paper speaks to both literatures. We can
measure the magnitude of pricing errors and relate it to buy-sell imbalances of any of our investor classes.

8Stock trading by retail investors is well studied, and the most relevant paper is Kaniel, Saar, and Titman (2008).
The authors show that net trades by retail investors this week are positively related to returns the following week. We
confirm the earlier results and add new economic insights based on the inattention friction. Not surprisingly, we estimate
retail investors to be a small fraction of slow investors. We further find that, in relative terms, they are a larger part of
quarterly and monthly slow investors than of daily slow investors.
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the per-investor private-value shock. In other words, while the model is unable to identify how many

investors are in each class or the hedge shocks they experience, we are able to identify the product of

the two.

Second, the model allows for a decomposition of the pricing error variance. The standard deviation

of the various components are: 0.097%, 1.575%, and 2.548% due to the respective daily, monthly, and

quarterly slow investors and 1.106% due to a component shared across all the investor arrival classes.

In addition to producing results for our sample of NYSE stocks, we also produce them for three,

size-based sub-samples of stocks (large, medium, and small stocks).

Third, the model quantifies the price impact of institutional trading. A $192 million shock to

fast institutions’ target portfolios leads to a pricing error of only 1.3%. This indicates that there is

substantial risk-bearing capacity at the time of the initial shock (both in terms of market making and

in terms of institutions ability to patiently trade.)

Fourth, we are able to carry out a counterfactual analysis. We find pricing errors explain 9.4%

of daily return variance. We then vary the risk aversion of the fast investors. Also, we assume slow

institutions start reacting faster (perhaps due to technology improvements). Not surprisingly, having

twice as many risk-tolerant fast investors (or having quarterly and monthly slow institutions become

daily slow investors) dramatically reduce the pricing errors’ fraction of daily return variance (from

9.4% to 2.5% and 0.9% respectively).

Our paper is closely tied to a literature that started with Grossman and Miller (1988) in which mar-

ket makers smooth non-synchronous trading demands due to inattentive investors. Recent inattention

papers such as Duffie (2010) and Bogousslavsky (2016) include attention heterogeneity that increases

the need for intertemporal smoothing.9 Bogousslavsky (2016) shows that the inattentive investors

can explain regularities in stock return autocorrelation patterns. Our model differs from these papers

in a number of key ways. First, our model has market makers, attentive (fast) investors, and multi-

ple classes of inattentive (slow) investors. Importantly, our inattentive investors arrive stochastically.

This feature keeps the dimensionality of the state space small enough to make structural estimation

9Chien, Cole, and Lustig (2012) explore how inattention in the form of intermittent rebalancing increases the volatility
of the market price of risk. Crouzet, Dew-Becker, and Nathanson (2019) and Weller (2018) examine how short-term
investors impact the incentives of long-term investors to acquire information about firms.
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feasible and thus identification of pricing errors possible (a detailed argument can be found at the end

of Section 2.2). Our closed-form solutions also allow us to decompose the pricing errors into easily

understood economic quantities.

Duffie (2010) discusses a number of empirical examples where pricing errors are found by identifying

liquidity demand shocks. Koijen and Yogo (2019) provide systematic evidence on liquidity demand by

using changes in 13F (holdings) data and changes in prices to estimate the latent demand of institutions

at a quarterly frequency. Under the assumption that this latent demand is mean reverting, Koijen

and Yogo (2019) find that institutions can cause long-lived price pressure in the cross-section of stock

returns. This finding complements our stock-level findings that pricing errors (in the time series

dimension) are identified by liquidity supply (market-maker inventories). Cella, Ellul, and Giannetti

(2013) examine how the institutional investors’ average holding periods across stocks relate to pricing

errors during market-wide negative shocks. They find that stocks held more by short-horizon investors

experience larger price drops and subsequent reversals. If short-horizon holding periods correspond

to more frequent rebalancing needs, their results are consistent with our model and empirical results

that larger hedging shocks lead to larger pricing errors.

Pricing errors arise in studies of bond and currency markets as well. Bao, Pan, and Wang (2011) as-

sume prices follow a random walk and estimate illiquidity as the negative covariance of high-frequency

and daily price changes. Hu, Pan, and Wang (2013) construct a market-wide noise measure by back-

ing out the implied yield curve from the daily cross-section of bonds and bills. Bacchetta and van

Wincoop (2010) calibrate a two-country model with infrequent portfolio rebalancing. Their results of

a forward discount bias mirror empirical findings that have long puzzled economists.

2 Asset pricing model with limited attention

Our theoretical model is recursive in nature, assumes that all investors are price-takers, and runs

in continuous time. The model’s core distinguishing feature is the inclusion of multiple classes of

inattentive investors who operate at different frequencies. Such inattention is the only friction in the

model (i.e., information is symmetric and agents are zero-mass price-takers).10 Our model includes

10Having only one friction (inattention) both clarifies the channels at work in the model and disciplines the data fitting
exercise.
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private-value shocks that investors experience and which offset one another. Therefore, in the absence

of the inattention friction, trade is purely reallocational, does not require intermediation, and does not

affect prices (i.e., no pricing errors). However, if at least one investor class is inattentive the model

can generate non-trivial price and trade patterns.

Intuition for the channels that generate our trading and return patterns can be obtained by con-

sidering an example subsumed by our model. Consider investors who might experience private-value

shocks for a single asset. Let part of the investor mass experience no such shocks and be perfectly

attentive, meaning they are continuously present in the market and ready to trade. These investors

will endogenously become market makers. Divide the remaining investor mass in half and let the

private-value shocks that one-half experiences be offset by the shocks that the other half experiences.

In other words, the target-holding changes for the asset sum to zero. Let one-half be perfectly attentive

(fast), like the market makers, and the other half be inattentive and arrive to trade with (stochastic)

delays.

Now consider that the attentive investors receive a negative private-value shock. As the inattentive

or slow investors are not all there at the time of the shock, prices temporarily experience downward

pressure to clear the market. This negative pricing error attracts market makers who purchase the

securities that the fast investors want to sell.11 It also induces these fast investors to reduce their

current liquidity demands and spread these demands over time (i.e., the optimal trading strategy calls

for “parceling out” trades).12 Both the fast investors and the market makers will sell to slow investors

once the latter investor class arrives at the market in the future, and as a result, the pricing error

will subside. The magnitude of the shocks, the relative sizes of the different investor classes, and

the inattention frequency of the slow investors together determine the magnitude and duration of the

pricing errors.

11Modeling the inventory control choices of market makers is highlighted in both Madhavan and Smidt (1993) and
Hendershott and Menkveld (2014). Our paper treats market makers as competitive price takers and does not allow
them to trade strategically. Such an assumption is helpful for obtaining closed-form solutions. At short horizons the
NYSE market makers have information and positional advantages that likely enable them to behave strategically. These
advantages diminish at lower frequencies, making NYSE market makers compete with hedge funds and other investors
to provide liquidity at longer horizons.

12This links our paper to the optimal execution literature—see Bertsimas and Lo (1998) and Almgren and Chriss
(2001) for examples. In our model, both the market makers and fast investors solve for optimal trading strategies, albeit
with different goals, leading to endogenous pricing errors.
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2.1 Model primitives

Time is continuous, indexed by t, and runs forever. Setting the model up in continuous time yields

closed-form expressions that serve three purposes. First, the setup creates transparent relationships

between the model’s deep parameters and the economic variables of interest. This transparency

facilitates economic insights. Second, the closed-form expressions make structural estimation feasible.

Third, our model becomes invariant to the sampling frequency. Section 3 shows how to convert the

implied model dynamics from dt to ∆t where the latter can span a second, an hour, a day, or a month.

Our model, therefore, can be used by monthly asset pricers as well as sub-millisecond microstructure

researchers. Appendix B provides a summary of the notation used in our model.

Assets. There are two assets in the economy. First, there is a risky asset in zero net supply that

pays dividends over any interval (t, t+ dt], with B being a Brownian motion.

dDt = σwdBt. (1)

The dividend process, having an expected value of zero, implies that the asset’s fundamental value

is zero. However, this dividend process is consistent with modeling a pricing error that fluctuates

around zero. Of course, adding a positive expected dividend would cause the asset’s expected price

to be above zero. Given that this paper’s empirical focus is on pricing errors and price changes, it

becomes convenient to center the dividend dynamics around zero. Second, there is a risk-free asset

with an exogenously given rate of return r > 0. The risk-free asset is in perfectly elastic supply

ensuring a constant payoff.

Investors. There are N + 2 classes of investors: Fast institutions (indexed by F ), market makers

(indexed by M), and N ∈ N classes of slow investors (indexed by i = 1, . . . , N). Let N := {1, . . . , N}

denote all classes of slow investors. We index all of the N + 2 classes with j ∈ {F,M} ∪N. There is

a continuum of agents in each of the N + 2 classes. The masses of the investor classes are mF , mM ,

m1, . . . , mN , respectively.

The slow investors are inattentive and only trade the risky asset infrequently. Concretely, a slow
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investor belonging to class i trades the risky asset at the jump times of a Poisson process. The

jump intensity of this Poisson process is λi and the Poisson processes are independent across investors

(even within a class).13 For convenience, we define Λ to be the diagonal matrix whose entries are the

attention intensities of the slow investors.

Λ := diag (λ1, . . . , λN ) (2)

Preferences. All investors are risk-neutral but suffer a quadratic utility loss when their holdings of

the risky asset deviate from a certain target. This target is moving over time and shared by investors

within a given class (more details can be found in a few paragraphs). Concretely, at time t, an investor

i of class j chooses his policies to maximize:

sup
C,π

Et

[∫ ∞
t

e−r(u−t)
(

dCu −
rγjσ

2
w

2
(Tj,u − πi,u)2 du

)]
, (3)

where Cu is the cumulative consumption of the investor up to time u, Tj,u is the target portfolio for

class j at time u, πi,u denotes his actual risky asset holdings at time u, and γj > 0 is a risk-aversion

parameter that determines the utility loss per unit of differential between target and actual holdings.

We interpret preferences as specified in (3) as follows: A class j investor wants to hedge some

risky exposure and can do so perfectly by holding Tj,t shares of the risky asset. If the expected excess

return on this asset is not currently zero, then a speculative position in the risky asset will increase

the investor’s expected wealth and consumption. The optimal portfolio balances hedging benefits and

speculative profits. The quasi-linear preferences of (3) are similar to those in Biais (1993), Duffie,

Gârleanu, and Pedersen (2007), Gârleanu (2009), Lagos and Rocheteau (2009), and Afonso and Lagos

(2015).

Target portfolios. An N -dimensional Brownian motion, Z, drives the slow investors’ target port-

folios (the innovations to Zt are also referred to as “hedge shocks” in this paper). Concretely, the

13A more general setting would allow for correlation across the inattention processes. For example, one could add
common shocks that would bring all inattentive investors to the risky-asset market at the same time. In such a case, the
price jumps towards its efficient level (i.e., to zero in our setting). Furthermore, even when not all investors are paying
attention, the possibility of this abrupt convergence induces bolder bets against inefficient prices. Overall, making the
attention processes correlated across agents attenuates the effect of inattention on prices, but does not eliminate the
qualitative results.
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target portfolio vector that comprises all slow investor classes is shown below. The first term in (4) is

the volatility of the target shocks experienced by each of the N slow investor classes.

TN,t := diag (σ1, . . . , σN )Zt ∈ RN . (4)

The target portfolio of the market makers is zero at all times and is shown in (5). This defini-

tion is consistent with market makers only trading to facilitate risk-sharing among the other market

participants.

TM,t := 0. (5)

Finally, the (scalar) target portfolio of the fast institutions is shown in (6) where 1(k×l) is a k × l

matrix of ones.14

TF,t := − 1

mF
1(1×N)diag (m1, . . . ,mN )TN,t, (6)

With the target portfolios defined in (4), (5), and (6), the sum of the target holdings in the risky asset

is zero at all times: ∑
j∈{F,M}∪N

mjTj,t = 0. (7)

If all investors are attentive at all times, then all investors will always hold their target portfolios, and

there is no reason for the price to differ from fundamental value (i.e., what is often referred to as the

“permanent component of price” is zero in our setting).

The Brownian motions in our paper are allowed to be correlated (i.e., the Bt that drives the

dividend process and the Zt’s that drive the target portfolios). Specifically, a correlation of ρ links

the ‘with dividend’ price/return dynamics and a shared target portfolio shock to all investors:

Corr (dBt,dZt) = ρ · 1(N×1). (8)

Equation (8) is a reduced-form way to model correlation between the permanent component of price

and shocks faced by slow/fast investors.15 Such a correlation could arise from target portfolio shocks

14In our model, we abstract away from target shocks affecting the risky asset’s fundamental value. We follow Lo,
Mamaysky, and Wang (2004) in assuming that the fast institutions’ target portfolio is equal and opposite to a weighted
sum of the slow investors’ targets.

15By “with-dividend permanent price” we mean the accumulation of all dividends up to the current time, PT =
∫ T

0
dDt.
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being imbalanced between fast and slow investors such that the sum of the shocks is non-zero.16

In this case, the permanent component of price will adjust so that market clearing occurs at the

long-run/permanent price where fast and slow investors’ target portfolios (conditional on the new

equilibrium price) sum to zero. Appendix C illustrates how imbalanced shocks can yield a permanent

price process that is equivalent to the with-dividend permanent price process used here. More broadly,

Appendix C illustrates how imbalanced shocks can result in a correlation of ρ between the balanced

shock process and returns.

The gap process (state variable). Finally, it is useful to define a “gap process” or Gt across all

classes of slow investors. This process keeps track of the gaps between the target and actual portfolios

and is summed across all slow investors in the N different classes. More precisely,

Gt := diag (m1, . . . ,mN ) (TN,t −AN,t) ∈ RN , (9)

where entry i of AN,t ∈ RN contains the actual holdings of all investors in class i:

Ai,t :=

∫
u∈mi

πu,tdu. (10)

This gap process turns out to be the state variable upon which all the model’s dynamics depend.

Defining the gap process at an investor-class level benefits from the independent arrivals of the investors

within the class. A “law of large numbers” result holds and consequently the gap process is an

Ornstein-Uhlenbeck (OU) process [an AR(1) process in continuous time].

The OU (gap) process has economic appeal as it essentially captures the order imbalance relative

to a first-best (i.e., the case when all investors are fully attentive). Because the gap process represents

an imbalance, market-clearing prices and their dynamics depend on it. This dependence will become

clear in the next subsection where we present equilibrium results. We will also show that changes in

the gap process relate to market-maker inventories and slow-investor flows.

16Such a correlation could also arise from information-based trading. For example, ρ would be negative if fast investors
trade on information in addition to their target portfolio shocks.
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2.2 Equilibrium

To ensure that the model’s full dynamics become available in closed-form, we assume slow investors are

infinitely risk-averse (i.e., γj =∞,∀j ∈ N).17 This is a technical assumption that removes speculation

by slow classes.18 This makes inattentive investors act like liquidity traders in many models. Such

traders do not act strategically nor condition their trading on price.

Our main equilibrium result is based on standard definitions that feature individual optimality,

market clearing, and rational expectations (see Appendix D.3 for this definition and a proof of the

following proposition). Our approach to solving for an equilibrium can be categorized as “guess and

verify.” We first solve the individual problems for all agents assuming a price process for the risky

asset. Then, given these solutions, we show that the assumed price process is the result of market

clearing. A more detailed description is in Appendix D.1.

We can write the gap process as follows:

dGt = −ΛGtdt+ diag (µ1, . . . , µN ) dZt, (11)

where µj := mjσj is the total risk mass of investors in class j. Appendix D.1 discusses the three

key assumptions/guesses: 1) The gap process follows an Ornstein-Uhlenbeck (“OU”) process; 2) The

pricing errors are linear in the gap process; and 3) The gap process is public information.19

An OU process for the gap vector in (11) has intuitive appeal as mentioned earlier. We see that

class j’s gap decays smoothly with intensity λj (an element in Λ). The independent arrivals of investors

generate the smoothness. The size of gap shocks scales with the mass of investors in this class since

µj is the product of mj and the size of an individual-investor shock (σj).

17Prior versions of this paper presented an extended version of the Duffie (2010) model. That model allows for market
makers and multiple classes of slow investors who trade strategically. The model with slow investors trading strategically
results in qualitatively similar predictions as those in the current draft: All of the previous model’s moments have the
same sign as those in the continuous-time model with non-strategic slow investors. However, our extended Duffie (2010)
model does not have closed-form solutions and is not suitable for structural estimation. Finally, please note that myopia,
which limits strategic behavior, is used in models such as Nagel (2012) and facilitates obtaining closed-form solutions.

18Investors who trade monthly are more likely to trade to exactly their target portfolio because the cost of speculative
trading (quadratic loss) is greater the longer the duration between the investor’s trades.

19As agents are risk-neutral in terms of consumption with a time preference parameter equal to the interest rate, any
policy in which consumption eventually takes place is equally good. Therefore, no consumption policy is reported. Note
that delaying consumption forever is not optimal.
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The equilibrium price process and optimal holdings of all agents are available in closed form (with

a proof in Appendix D).

Proposition 1 (Equilibrium Price Process and Holdings). An equilibrium exists and is unique among

equilibria where the gap process follows an Ornstein-Uhlenbeck, pricing errors are linear in the gap

process, and the gap process is public information. The first expression is for the price process. The

final three expressions are for holdings:

• The equilibrium price of the risky asset is given below where p ∈ RN and IN is the identity

matrix in RN×N :

Pt = −p>Gt with p> =
σ2
w

mF
rγF

+ mM
rγM

1(1×N) (rIN + Λ)−1 . (12)

• A market maker holds πM,t shares of the risky asset:

πM,t =
1

rγMσ2
w

[
1

dt
Et (dPt)− rPt

]
=

1

rγMσ2
w

[
p> (rIN + Λ)Gt

]
(13)

• A fast institution holds πF,t shares of the risky asset:

πF,t = TF,t +
1

rγFσ2
w

[
p> (rIN + Λ)Gt

]
(14)

• A slow investor of class j who arrives at the market at time t holds πj,t shares:

πj,t = Tj,t. (15)

Proposition 1 leads to the following observations. The equilibrium price process determines the

dynamics of the trading policies of the market makers and fast institutions—see the row vector of

weights, p>, in (12).

Second, the price impact row vector p> that translates portfolio-holding gaps to pricing errors

yields several insights. Higher fundamental risk (σw) or lower risk absorption capacity of fast investors

increase the price impact. This is not surprising. What is not as obvious is that a one unit larger gap

for class j investors commands a price impact that is inversely proportional to the arrival intensity of

investors plus the risk-free rate. Investors in our model require a larger compensation for speculating

against slower investors. This result is intuitive, as fast investors are stuck with a position for longer.20

20The larger premium for lower interest rates and, at the same time, less discounting—see preferences in (3)—is more
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Third, Proposition 1 shows how hedging and/or speculative motives define the various optimal

portfolios. Starting with the market maker’s holdings in (13), note that the RHS term loads positively

on a weighted sum of the gap process with weights proportional to the row vector p>. In (12),

the pricing error loads negatively on this same weighted sum. By holding more of an asset with a

negative pricing error (that will mean revert to zero), the market maker makes a speculative profit

in expectation. Further, note that the speculative motive is larger when he is less risk-averse (γM )

or when the asset has less fundamental risk (σw). The fast institution’s portfolio in (14) features

both hedging and speculative motives additively. The first RHS term involves his target portfolio and

therefore represents hedging. The second RHS term is the speculative motive. Note that the slow

investor’s portfolio in (15) only features a hedging motive as, by assumption, this investor classes does

not engage in speculation.

Fourth, expressions for the optimal holdings yield an interesting observation. As noted when

discussing Proposition 1, more fundamental risk reduces the speculative positions of fast investors

(i.e., fast institutions and market makers), all else equal. In equilibrium, however, the same logic does

not follow, and speculative positions are invariant to fundamental risk. The compensation for bearing

fundamental risk increases in equilibrium to the point that fast investors willingly take it on—i.e., note

that the σ2
w in (14) cancels against σ2

w in (12). This result is best understood by market clearing. The

risky positions have to be held by the fast investors as they are the only ones with positive risk-bearing

capacity (i.e., γF , γM <∞, γj =∞).

Finally, note that the dimensionality of the state variable Gt depends on the number of slow-

investor classes N and can therefore be kept small during estimation (e.g., N = 6 in Section 4.2).

Yet, pricing errors can stretch across long horizons depending on how inattentive the slowest investor

is. This is an important feature of our model as it makes structural estimation possible. One can

compare our stochastic-arrivals set-up to the set-up found in a model such as Duffie (2010) which

features infrequent but deterministic arrivals. Such a model needs a state space with dimensionality

equal to the frequency of the slowest investors. If one wants to generate monthly effects using daily

data, this requires a state-space of dimensionality 21. An additional benefit of our model is that it

yields analytic expressions for any dimensionality, while Duffie’s model generally does not.

challenging to explain. It appears that temporarily tying up capital in speculative positions is more expensive in our
economy.
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3 Model-implied discrete-time dynamics

This section translates the continuous-time model to a version that makes estimation possible for

discrete-time data sampled in ∆t periods. The section first derives the model dynamics to provide

expressions for variances, covariances, and autocorrelations. Appendix B provides a notational sum-

mary of the parameters used in estimation. In Section 4, we use maximum likelihood to estimate the

model’s parameters using NYSE data. Our data’s sampling period is one day. To keep the structural

estimation numerically tractable, we consider three classes of limited-attention (slow) investors:

• Class d investors who, on average, arrive at the market once a day,

• Class m investors who, on average, arrive once a month, and

• Class q investors who, on average, arrive once a quarter.

As our data is daily, we pick one class (d) to match this frequency. We then add a slower class (m)

and a much slower class (q).21 The slow investors arrive at the market with Poisson intensities such

that average durations are once a day (for d), once a month (for m), and once a quarter (for q). For

each of the slow investor classes, we further categorize into two sub-classes. Slow investors are either

institutional (“i”) or retail (“r”). The reason for this further categorization is that we have retail-flow

data.22 The investor-class subscripts are thus {d,m, q} × {i, r}.

The matrix with Poisson intensities is given by:

Λj = diag (λdj , λmj , λqj) = diag

(
1,

1

21
,

1

63

)
, j ∈ {i, r} (16)

Λ =

 Λi 0

0 Λr

 ∈ R6 × R6.

21Internet Appendix F shows that adding an intermediate frequency, such as weekly, does not provide additional
insights. The model simply puts no weight on the risk masses of the weekly investor classes.

22We refer to individuals as “retail” so we can use different single-letter subscripts for institutions and individuals.
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The gap processes for the 3× 2 classes of slow investors become:23

Gj,t =
(
Gdj,t Gmj,t Gqj,t

)>
∈ R3, j ∈ {i, r} (17)

Gt =

 Gi,t

Gr,t

 ∈ R6.

The gap processes are associated with investors that have risk masses (i.e., µ = mσ):

µj =
(
µdj µmj µqj

)>
∈ R3, j ∈ {i, r} (18)

µ =

 µi

µr

 ∈ R6.

Discrete-time dynamics. The discrete-time dynamics for the full model can now be written down

explicitly. First, we stack all the model variables in the following vector:

Yt =
(
G>t MMInvt RetFlowt Returnt

)>
∈ R9 (19)

where Gt is defined above, MMInvt,RetFlowt,Returnt ∈ R are the end-of-period market-maker in-

ventories, per-period retail flows, and per-period returns, respectively (where period t runs from time

t− 1 to time t). The model-implied dynamics are:

Yt = V Yt−∆t +Wεt. (20)

The dynamics in (20) imply a vector autoregression (VAR) in which the coefficient matrix V incor-

porates the autoregressive component and the coefficient matrix W maps the shocks into the model’s

variables. The VAR cannot be estimated directly because the elements of Gt are not directly observable

in the data.

Writing out the model’s discrete time dynamics shows how the different model parameters affect

the model’s dynamics and allows for structural estimation. The coefficient matrix V (with row and

23The model estimation procedure is based on maximum likelihood estimation (MLE). In principle, there is no bound
to the number of classes/frequencies a researcher could study. However, one runs into issues with dimensionality of the
parameter space and troubles inverting key matrices. We have three classes of slow investors and have chosen natural
frequencies that match our data frequency and existing empirical work. Internet Appendix F shows that adding an
intermediate frequency of investors (i.e., weekly) does not provide additional insights.
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column dimensions in light gray along the axes) is:

V =



3 3 1 1 1

3 e−Λi∆t 0 0 0 0

3 0 e−Λr∆t 0 0 0

1 βM1(1×3)e
−Λi∆t βM1(1×3)e

−Λr∆t 0 0 0

1 0 1(1×3)

(
I3 − e−Λr∆t

)
0 0 0

1 βw1(1×3)Ai βw1(1×3)Ar 0 0 0


∈ R9×9, (21)

where In is the identity matrix of size n, Aj = (rI3 + Λj)
−1 (I3 − e−Λj∆t

)
with j ∈ {i, r}, and the

betas are defined as follows:

βw =
σw

mF
rγF

+ mM
rγM

and βM =

mM
rγM

mF
rγF

+ mM
rγM

. (22)

These two betas capture (ratios of) deep economic parameters from our model and are discussed

further in the next two paragraphs. We refer to
mj
rγj

as the “risk-aversion adjusted mass of investor

class-j.” In our model, two of the investor classes (M and F ) are present at the time of a shock. Each

class conditions its behavior on the price impact it may have. Thus, the risk-aversion adjusted masses

of both appear in (22).

The first beta in (22), βw, is the ratio of the asset’s fundamental risk (σw) to the sum of the

risk-aversion adjusted masses of the market makers and fast institutions. In other words, it is the

magnitude of a typical shock divided by how many investors (adjusted) are immediately around to

trade. Note also that βwσw is also the first term in the factor (p>) that scales the gap process as

shown in (12). If βw is zero, then investors’ inattention does not impact prices. βw can be zero if the

dividend process has zero variance, if the market makers are risk neutral, or if the fast investors are

risk neutral.

The second beta in (22) is βM , which captures the market makers’ fraction of risk-aversion adjusted

mass available to trade at the time of the shock. This is important because the larger market makers

are relative to the trading needs of the fast institutions, the more markets will accommodate the

fast institutions’ immediate trading needs. Hence, βM plays a significant role in the market-maker

inventory dynamics while βw plays a significant role in the price dynamics. Both betas are proportional
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to the gap processes, but with different sensitivities.

The various elements of V are intuitive. The first three rows capture what (in expectation) at

the end of the period is left of start-of-period inefficient holdings of the three classes of inattentive

institutions. The change is due to in-period arrivals of some of these institutions. The same goes

for the second set of three rows, which correspond to retail investors. The seventh row sums these

residual inefficient holdings across all slow investors to identify how they contribute to end-of-period

market-maker inventory. The eighth row picks up the flow of in-period retail investor arrivals by

subtracting their end-of-period inefficient holdings from their start-of-period inefficient holdings (i.e.,

I3 − e−Λr∆t). The ninth row also picks up this flow for inattentive institutions and retail investors to

capture how much of the pricing error disappeared due to in-period arrivals.

3.1 Intuition

A description of the dynamics of the full model with nine variables is given in Appendix E. This includes

the various elements of W and the variance and covariance of the shocks, εt. To gain intuition about

how the VAR and our data identify model parameters, we simplify (19) from R9 to R3 by focusing

only on one gap process (one class of slow investors), market-maker inventories, and returns. In

addition, we set ρ = 0 for the time being.24 Thus, the VAR in (20) has a reduced form using

Yt =
(
Gt MMInvt Returnt

)>
in this example. The V matrix in (21) is similarly reduced for this

simplified version of the model by considering only rows and columns numbered 1, 7, and 9.

The lag k (> 0) autocovariance matrix of the reduced Yt vector is shown below. We omit the first

row and column that correspond to the unobservable gap process and focus only on the lower-right

2× 2 elements that relate to MMInvt and Returnt:

Cov(Yt, Yt−k) = e−kλ∆t · µ
2

2λ
·


· · ·

· β2
M −βMβw

(
1−e−λ∆t

r+λ

)
· βMβw

(
e+λ∆t

)
1−e−λ∆t

r+λ −β2
w

(
e+λ∆t

) (
1−e−λ∆t

r+λ

)2

 (23)

where both βw and βM are defined in (22) earlier. The structure of (23) indicates that the variance

24The full system in Appendix E is used in the empirical estimation, and it allows for additional classes of slow
investors, retail order flows, and ρ 6= 0.
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of returns and market-maker inventories should help enable identification of βw and βM . The entire

matrix is multiplied by an exponential decay factor in λ and the constant µ2

2λ . Because µ does not

appear anywhere else we must use more than just the variances and covariances of returns and market-

maker inventories to identify µ. This motivates our use of autocorrelations and cross-autocorrelations.

From the above autocovariance matrix we can calculate covariances, cross-autocovariances, vari-

ances, correlations, and cross-autocorrelations. We begin with market-maker inventories which have

a variance of:

V ar(MMinvt) =
µ2

2λ
· β2

M . (24)

Once µ and λ are identified the variance of market-maker inventories identifies βM . The autocovariance

of market-maker inventories is:

Cov(MMinvt,MMinvt−k) = e−kλ∆t · µ
2

2λ
· β2

M .

Combining these into the autocorrelation of market-maker inventories yields:

Corr(MMinvt,MMinvt−k) = e−kλ∆t. (25)

The market-maker inventories follow an OU process which leads to their decay following an AR(1)

process. Hence, the dynamics of market-maker inventories identifies the arrival intensity of the slow

investors (the λ parameter). Note that while there is only one λ in this simplified version of the model,

we consider multiple classes of slow investors in our empirical analysis. In the more general setting,

market-maker inventories continue to help identify the arrival intensities of the different classes of

slow investors. Additional classes of slow investors cause market-maker inventories to follow a multi-

dimensional OU process. This requires multiple values of k to be used to help identify the different

arrival intensities of the different classes of slow investors. The intuition from the simple model is that

if the estimated multiple-slow-investor-class model fits the autocorrelation of market-maker inventories

in the data, then the number and arrival intensities of the classes of slow investors is well identified.
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We next turn to returns, which have a variance of:

V ar(Rett) =
µ2

λ
· β2

w ·
(
1− e−λ∆t

)
(r + λ)2 + σ2

w∆t. (26)

The first term of this variance is increasing in µ, while both terms are increasing in σw because

βw is proportional to σw—see (22). In addition, the variance of returns can be decomposed to reflect

both the slow reduction of legacy pricing errors and new shocks that arrive:25

V ar (Rett) =

Legacy error reduction︷ ︸︸ ︷
µ2

2λ
· β2

w ·
(
1− e−λ∆t

)2
(r + λ)2 +

New shocks︷ ︸︸ ︷
µ2

2λ
· β2

w ·
(
1− e−2λ∆t

)
(r + λ)2 + σ2

w∆t .

The autocovariance of returns displays a similar AR(1) decay as does market-maker inventories:

Cov(Rett,Rett−k) = −e−(k−1)λ∆t · µ
2

2λ
· β2

w ·
(

1− e−λ∆t

r + λ

)2

.

The autocorrelation of returns is more complicated than the autocorrelation of market-maker

inventories,

Corr(Rett,Rett−k) = −e−(k−1)λ∆t ·
µ2

2λ · β
2
w ·
(

1−e−λ∆t

r+λ

)2

µ2

λ · β2
w · 1−e−λ∆t

(r+λ)2 + σ2
w∆t

, (27)

because of the variance due to the fundamental value component, σ2
w∆t. Given σ2

w is in the numerator

of β2
w, σ2

w is in all terms in the numerator and denominator and the autocorrelation of returns is

independent of σw. In contrast, µ only appears in one of the denominator’s terms in (27). Therefore,

the autocorrelation of returns is increasing in µ. This enables the autocorrelation of returns to help

identify µ—an identification not possible using the autocorrelation of market-maker inventories.

Overall, in the simplified version of the model with one class of slow investors there are four

parameters to be identified: λ, βM , µ, and βw. The above discussion focuses on how the four equations

for the variance and autocorrelations of market-maker inventories and returns [(24), (25), (26), and

(27)] can be used to identify the model: the autocorrelation of market-maker inventories identifies λ;

25By setting ρ = 0 in this simplified version of the model, the variance due to new shocks does not include a component
due to the shared effect.
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the variance of market-maker inventories helps identify βM ; and the variance and autocorrelation of

returns help identify µ and βw.

The simplified model only has one state variable—the gap process. Both prices and market-maker

inventories are proportional to the gap process—see (13) and (12). Therefore, it is not surprising that

observing market-maker inventories and returns are sufficient to identify the model without needing

to use information about the slow investors.26 This intuition holds for the general model.27

In addition to variances and autocorrelations of market-maker inventories and returns, the model

provides the lead-lag cross-autocovariances of returns and market-maker inventories. However, the

Cov(Yt, Yt−k) shows that:

Cov(MMInvt,MMInvt−k) · Cov(Rett,Rett−k) = Cov(MMInvt,Rett−k) · Cov(Rett,MMInvt−k).

Therefore, once the autocorrelation of returns and market-maker inventories are known, the product

of the lead-lag dynamics between returns and inventories is determined.28 Hence, we focus only on

the covariance of returns with past market-maker inventories:

Cov(Rett,MMInvt−k) = e−(k−1)λ∆t · µ
2

2λ
· βM · βw ·

1− e−λ∆t

r + λ
.

Hence, dividing this autocovariance by the standard deviations of returns and market-maker in-

26Note that while the model is identified using only market-maker inventories and returns, the parameters that are
identified are less economically interesting. βM , µ, and βw are not exactly identified because µ is always multiplied by
βM or βw. βM and βw share the same denominator—see (22). Therefore, the four equations—(24), (25), (26), and
(27)—identify λ, σw (the numerator of βw), µ divided by the sum of the risk-aversion adjusted masses of market makers
and fast investors (the denominator of βM and βw), and the risk-aversion adjusted mass of market makers (the numerator
of βM ). Put another way, µ ·βM and µ ·βw are identified, but the values of µ and the betas are not separately identified.
The source of µ and βM and βw not being fully separable is (21) where the dynamics and market-maker inventories and
returns based on the gap process are scaled by βM and βw. Note that in (21) the dynamics of the slow investors trading
in row 8 is not scaled by the betas. Therefore, the variance of the slow investor trading can be used to separately identify
µ, which then identifies βM , and βw—see also (11). Because this section focuses on parsimoniously providing intuition
for how the various moments help the identify the model, we do not write out moments based on slow investor trading.

27As long as a sufficient number of lagged autocorrelations are used relative to number of slow investor classes (which
determines the dimension of the state variable), the dynamics of market-maker inventories and returns at different lags
provide enough information to characterize the multidimensional state variable.

28This relation does not hold in the more general model with multiple classes of slow investors.
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ventories gives the cross-autocorrelation of returns with past market-maker inventories:

Corr(Rett,MMInvt−k) = e−(k−1)λ∆t ·

√
µ2

2λ · βw ·
1−e−λ∆t

r+λ√
µ2

λ · β2
w ·

(1−e−λ∆t)
(r+λ)2 + σ2

w∆t

. (28)

While the structure of the above autocorrelation (returns and lagged market-maker inventories)

share some similarity to the structure of the autocorrelation of returns (by themselves), it differs

in that it is decreasing in σw. While the cross-autocorrelation of returns with past market-maker

inventories is not needed for identifying the simplified model, the fit of this cross-autocorrelation can

be thought of as an over-identification test in the empirical estimation.

4 Estimation and results

4.1 Data

Our data start in January 1999 and end in December 2005 and comes from four datasets:

• An internal New York Stock Exchange (“NYSE”) database named the Specialist Summary File

(or “SPETS”) contains specialists’ closing inventory positions for each stock at the end of each

day. The NYSE assigns one specialist per stock and a given specialist is responsible for making

a market in approximately ten stocks. See Hasbrouck and Sofianos (1993) for further discussion

of the SPETS database.

• An internal NYSE database named the Consolidated Equity Audit Trail Data (or “CAUD”)

contains the number of shares bought and sold by retail (individual) investors, for each stock,

over each day. In addition, the CAUD database provides trading volume. See Kaniel, Saar, and

Titman (2008) for further discussion of the CAUD database.29,30

• The Trades and Quotes (“TAQ”) database provides daily closing mid-quotes prices. Prices and

29The investor classification in CAUD—together with market clearing—implies that the number of shares bought/sold
by the market maker equals the sum of the number of shares bought/sold by the retail investors and institutions.

30We convert market makers’ inventory positions and retail investor net trades to US dollars (both variables are
originally in number of shares). For each stock, we multiply the number of shares by the stock’s sample average price so
as not to introduce price changes directly into the trading variables.
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returns in this paper are measured at the mid-quote to avoid bid-ask bounce. All prices are

adjusted to account for stock splits and dividends.

• The Center for Research in Security Prices (“CRSP”) provides the number of shares outstanding

(used to calculate market capitalizations) and information necessary to adjust prices for stock

splits/dividends.

Before discussing the details of the data, it is worthwhile to provide some context. During our

sample period, 80 percent of trading occurred on the NYSE. Historically, the NYSE assigned one

market maker (called a “specialist”) to each stock. While the designation of a single market maker

is relatively unique to the NYSE, the fundamental economic forces related to limited risk-bearing

capacity for liquidity provision remain the same. It is likely that other investors, for example, hedge

fund traders and, more recently, high-frequency traders, compete with the specialist by placing limit

orders to supply liquidity.31

Using the retail trading data from the NYSE has pros and cons similar to using the specialist data.

The data represent a large, comprehensive sample of trades. However, there exist retail trades with

broker dealers who internalize orders and trades on markets other than the NYSE.32 As discussed

above, the data on slow investors, which include retail traders, is not required to identify the model’s

price dynamics but is useful for identifying more economically intuitive parameters in the model.

We start with the 2,357 common stocks that can be matched across the NYSE, TAQ, and CRSP

databases. We construct a quasi-balanced panel of data to ensure results are comparable throughout

time—a stock’s data need to be available at the beginning and end of our sample period. Stocks with

an average share price of less than $5 or larger than $1,000 are removed from the sample. The final

sample consists of 689 actively-traded stocks.33

31Hendershott and Moulton (2011) show the NYSE’s market structure changes after our sample period (2006-7) leading
to a reduced role for the specialist and a decline in the NYSE’s share of trading. This evolution highlights a potential
weakness of our data, as well as some strengths. On the positive side, the NYSE specialist system that we study is the
market structure underlying much of the data used in modern asset pricing. Comprehensive data on the trades and
positions of other liquidity suppliers who compete with (or replace) the specialists are not available. It is unclear when
or if such data may become available.

32Our retail trading and market-maker inventory data may not be comprehensive for all such market participants,
e.g., other investors provide liquidity. If not, as long as our data is representative of market participants, then all of
our estimation results remain unchanged except for: i) our estimate of the market-makers’ share of the immediate risk
aversion-adjusted mass (βM ) is likely to be a lower bound; ii) the risk masses of the retail-investor classes (µr’s), as
fractions of the risk mass of all slow investors, become lower bounds.

33The sample is similar to the one used in Hendershott and Menkveld (2014). For a more detailed characterization of
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Idiosyncratic variables: We focus on idiosyncratic components of our variables for several rea-

sons. First, the autocorrelation of stock market returns is not statistically significantly different from

zero. Therefore, unlike for individual stocks, there is little evidence to suggest market-wide pricing

errors. This could arise from the risks associated with market-wide return shocks being able to be

hedged with highly-liquid index products. Second, unlike the market-maker inventory dynamics for

individual stocks, the systematic market-wide component of the market-maker inventories exhibits

little autocorrelation.

For each return and trading variable, we construct a common factor equal to the market capital-

ization weighted average of the underlying variable. We regress each variable on its common factor

and save the residual as the corresponding idiosyncratic variable. For notational simplicity, we omit

any subscripts or superscripts referring to “idiosyncratic” and, for example, use MMInvt to denote the

idiosyncratic component of market-maker inventories. After removing the market-wide components,

the contemporaneous pairwise correlations (across firms) are 0.034, 0.009, and 0.036 in market maker

inventories, retail flows, and returns, respectively.

This idiosyncratization procedure has a strong effect on returns (not surprisingly) but has only

a very weak effect on the trading variables. For example, in the cross-section, the variance of the

idiosyncratic components are 97.4% of total variance for MMInvt and 99.9% for RetFlowt. Not id-

iosyncratizing trade variables likely affects model estimates only mildly, yet we prefer to use the

idiosyncratic versions to not introduce bias. The model focuses on non-systematic effects; order flows

and positions due to (market-wide) systematic effects are removed by the procedure described above.

Figure 1 plots our three variables’ autocorrelations and the lead-lag correlations among the vari-

ables up to a lag of 20 days. For ease of exposition, we refer to the lead-lag correlations as cross-

autocorrelations. The upper nine plots show the (cross) autocorrelations of all possible ordered pairs

of the three series. Note that contemporaneous correlations are shown at lag zero on the six off-

diagonal plots. The lower three plots show the standard deviation of each series.34 These 12 plots in

Figure 1 illustrate the multivariate auto-covariance function for all series with lags ranging from zero

the stocks, please see that paper.
34To equally weight across stocks, all empirical variables (market maker inventories, retail flows, and returns) are

standardized to have equal variance across stocks by dividing each variable (for each stock) by that variable’s variance
within that stock. All variables are then re-scaled by the average of that same variance across all stocks to ensure the
variance of the full sample equals the average variance across stocks.
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Figure 1. Empirical moments. These upper nine plots show the empirical autocorrelations and
cross-autocorrelations with 95% confidence bands. Standard errors are based on a block bootstrap
methodology as discussed in Footnote 37 and in Internet Appendix B. The lower three plots show
empirical standard deviations.
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days to 20 days (monthly). The plots summarize the dynamics of our data series. The plots show the

cross-sectional average moments along with their 95% confidence bands based on a block bootstrap

methodology as discussed in Footnote 37 and in Internet Appendix B.

The figure has some notable and statistically significant patterns. First, the standard deviation

of market-maker inventories is $1.25 million—see plot (4,1). Inventories initially decay rather quickly

as the first-day autocorrelation is 0.58—see plot (1,1). After a day, they decay slowly and end with

a 20-day autocorrelation of 0.2. Second, the standard deviation in retail flows is $2.0 million—see

plot (4,2). Similar to market-maker inventories, they decay extremely quickly on the first day (even

more quickly than do market-maker inventories) and then slowly over the following nineteen days—see

plot (2,2). Third, the standard deviation of idiosyncratic daily returns is 2.5% (or 250 basis points)—

see plot (4,3). The return autocorrelations are negative throughout the majority of the first twenty

days suggesting that at least part of the original pricing error is persistent—see plot (3,3). Focusing

again on plot (3,3), the average return autocorrelation is -0.0056 with a standard deviation of 0.0019

across our block bootstrap draws (indicating statistical significance at all conventional levels).

The figure further reveals strong cross-autocorrelations. First, market-maker inventories and retail

flows are positively correlated, both contemporaneously and through time—see plot (2,1) and (1,2).

This pattern is consistent with our model. Periods when market makers are long securities correspond

with periods when retail investors are buying. Such a pattern is consistent with market makers holding

securities for slow retail investors to later purchase.

Second, there is a strong negative correlation between the market-maker inventories and contempo-

raneous returns (-0.25) that turns to a modest positive correlation with future returns (but is basically

zero after day 10). This pattern suggests market makers are compensated for intermediation—see

plot (1,3). They purchase securities cheaply to sell at higher future prices. Such selling is consistent

with the current return correlating steadily less negatively with future inventories—see plot (3,1).

Third, a negative current return correlates with retail investors buying contemporaneously as well

as with continued retail buying in days to come—see plot (3,2).35 This is consistent with a positive

35In our model, if ρ = 0, then hedging shocks are uncorrelated with fundamental-value innovations implying a zero
contemporaneous correlation of retail flows and returns, which is inconsistent with the data. This implies that the
contemporaneous correlation of retail flows and returns plays an important role in identifying ρ.
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target shock that makes the more-attentive retail investors buy now, while slower retail investors buy

at a later time. While inattention in our model causes retail investors to have lower utility, retail

investors benefit in monetary terms because as a group they appear to buy below fundamental values.

Even those who arrive late seem to buy at depressed prices—to see this point, cumulate the strong

contemporaneous negative return with modest future positive returns shown in plot (2,3).

Figure 1 also illustrates the similarities between market-maker inventories and retail flows. The

correlation of these variables with returns is similar—compare plot (1,3) with (2,3) and also compare

plot (3,1) with (3,2). In addition, market makers inventories and retail flows are positively correlated,

see plots (1,2) and (2,1). In our model, these correlations follow from market makers and retail traders

both trading against price pressure, i.e., selling when the pricing error is positive. Trading against

price pressure is often an important component when defining liquidity provision. However, liquidity

provision typically also involves temporarily holding a sub-optimal position and profiting from the

pricing error (i.e., when the pricing error is positive, own less of an asset than when the pricing error

is zero or negative.) In our model, market makers hold sub-optimal positions in order to profit from

the pricing error, but retail traders (who are present) do not. Therefore, our model illustrates how

the empirical correlations between retail flows and returns—consistent with the liquidity provision

shown in Kaniel, Saar, and Titman (2008)—can arise from different motivations than those of market

makers.36

4.2 Results

A standard MLE procedure is used to estimate the model’s deep parameters. For a particular value of

the parameters, the likelihood is evaluated recursively (through time) using the Kalman filter (Durbin

and Koopman, 2012, Ch. 7). This likelihood is then optimized with respect to these parameters by

using a standard steepest-ascent method. The method requires picking starting values, which is done

by matching a subset of auto-covariances in the data. Please see Internet Appendix A for a detailed

discussion.

We present “pooled” estimates for all stocks in our sample, as well as for sized-based sub-samples

36In our model, inattentive traders (such as retail traders) who are present in the market, trade directly to their
target portfolios. If this modeling assumption is relaxed, as in Duffie (2010), then retail traders engage in some liquidity
provision as well as trading due to hedging needs and inattention.
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of stocks. Stocks are divided into large, medium, and small terciles. The large tercile is divided

in half (upper-half and lower-half). When performing a given estimation, firm data are stacked. A

sufficient number of empty observations are inserted between the firms so as not to affect the lead-lag

relationships inherent within a given firm’s data. Also, because market makers and retail traders are

likely to trade for reasons other than those in our model, our estimation allows for shocks to the

market-maker inventories and retail investor trading that are independent of the model’s shocks. The

standard deviations of these shocks are σeM and σer , respectively.

Table 2 presents the estimation results for our full sample (“All Stocks”) as well the size-based sub-

samples. All but five parameter estimates are significant at a 5%-level.37 We now discuss important

results related to Table 2.

First, focusing on “All Stocks”, the slow institutions’ risk masses are, perhaps not surprisingly,

a lot higher than those of the retail investors. The slow institutions’ risk masses are 151, 25.1, and

7.76 for daily, monthly, and quarterly frequencies, while the slow retail investors’ risk masses are

1.63, 4.97, and 2.03 for the same frequencies.38 Note further that comparing within investor type,

there is relatively more retail risk mass at the quarterly frequency than at the daily frequency. This

confirms our intuition that institutions, even the ones who are slow, are still relatively faster than

retail investors. However, the results do show that there are some attentive retail investors who visit

the market once a day on average and some relatively inattentive institutions who visit the market

once a quarter on average.39

37Throughout this paper, standard errors are computed using a block bootstrap procedure. Each firm is mapped into
one of 30 industries based on Ken French’s website. We then draw one firm from each industry, create a sample based
on this subset of firms, estimate the model, and save parameter / figure values. The procedure is repeated 100 times.
Additional discussion is given in Internet Appendix B.

38The risk masses also correspond to the standard deviations of the hedging shocks in millions of dollars. Cross-
sectionally, the shocks are declining in firm size.

39The retail risk-mass estimates imply approximately 20% of retail is at the daily frequency. When interpreting this
fraction, a number of factors must be considered. First, loosely speaking, the total mass of slow traders is identified
by the market makers inventories. The retail flow data identify how much of the slow trader mass is retail—while the
residual represents institutional (non-retail) slow traders. The relative sizes of institutional and retail slow traders can
be seen by comparing the µ.,i’s to µ.,r’s. At a daily frequency, the slow institutions are roughly 100 times larger than
retail investors, except for the small stocks where the ratio is about 50 times. Hence, the retail traders are small at a
daily frequency—though at a quarterly frequency, the slow institutions are only 2-18 times larger than retail investors.
Second, the less sophisticated retail traders’ orders have historically been paid for (payment for order flow) and not sent
to the NYSE—see a discussion in Kaniel, Saar, and Titman (2008). Third, retail trading includes balanced buying and
selling (which nets to zero in our retail flow data). In addition, there is retail flow that is outside of our model—which
we estimate with the σer parameter. Therefore, while it is true that roughly 20% of the total mass of retail investors
arrive daily, our model and data only identify a subset of all retail trading.
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Table 2
Parameter estimates

This table presents the maximum likelihood parameter estimates and their standard errors. We
consider “All Stocks” as well as four size-based sub-samples labeled “Large-Upper,” “Large-
Lower,”“Medium,” and “Small” (the large tercile has been divided in half.) Subscripts: “d” daily;
“m” monthly; “q” quarterly; “i” slow institutional investors; “r” slow retail investors. Idiosyncratic
noise in dividends (σw); market-maker inventories (σeM ); and retail flows (σer); Standard errors are
shown in parentheses and are based on a block bootstrap methodology as discussed in Footnote 37
and in Internet Appendix B. The stars (∗/∗∗/∗∗∗) indicate statistical significance at a 10%, 5%, and
1% level, respectively.

All Large Stocks Medium Small
Stocks Upper-Half Lower-Half Stocks Stocks

Panel A: Risk masses of slow institutional investors
µdi 151

(13.9)

∗∗∗ 589
(98.4)

∗∗∗ 142
(1.13)

∗∗∗ 62.5
(3.01)

∗∗∗ 12.8
(1.23)

∗∗∗

µmi 25.1
(2.32)

∗∗∗ 78.4
(13.1)

∗∗∗ 17.5
(1.44)

∗∗∗ 9.29
(0.51)

∗∗∗ 3.85
(0.45)

∗∗∗

µqi 7.76
(0.69)

∗∗∗ 40.8
(6.65)

∗∗∗ 8.41
(0.18)

∗∗∗ 2.18
(0.16)

∗∗∗ 0.65
(0.50)

Panel B: Risk masses of (slow) retail investors
µdr 1.63

(0.08)

∗∗∗ 3.92
(0.17)

∗∗∗ 1.18
(0.049)

∗∗∗ 0.494
(0.03)

∗∗∗ 0.182
(0.04)

∗∗∗

µmr 4.97
(0.37)

∗∗∗ 12.8
(1.22)

∗∗∗ 3.08
(0.28)

∗∗∗ 1.39
(0.10)

∗∗∗ 0.62
(0.11)

∗∗∗

µqr 2.03
(0.19)

∗∗∗ 6.63
(1.25)

∗∗∗ 2.74
(0.38)

∗∗∗ 0.916
(0.07)

∗∗∗ 0.036
(0.06)

Panel C: Deep parameters
βM 0.0082

(0.0007)

∗∗∗ 0.0042
(0.0007)

∗∗∗ 0.0077
(0.0003)

∗∗∗ 0.0089
(0.0005)

∗∗∗ 0.0209
(0.0019)

∗∗∗

βw 0.0933
(0.037)

∗∗ 0.0522
(0.007)

∗∗∗ 0.0371
(0.050)

0.2570
(0.117)

∗∗ 0.5370
(0.409)

Panel D: Volatility related to returns, market-maker inventories, and retail flows
σw 222

(17.4)

∗∗∗ 125
(11.1)

∗∗∗ 232
(18.9)

∗∗∗ 223
(16.7)

∗∗∗ 255
(19.8)

∗∗∗

σeM 0.385
(0.080)

∗∗∗ 1.42
(0.133)

∗∗∗ 0.538
(0.042)

∗∗∗ 0.174
(0.040)

∗∗ 0.001
(0.001)

σer 1.58
(0.034)

∗∗∗ 3.43
(0.074)

∗∗∗ 1.07
(0.021)

∗∗∗ 0.50
(0.01)

∗∗∗ 0.22
(0.01)

∗∗∗

Panel E: Shared component
ρ −0.223

(0.022)

∗∗∗ −0.233
(0.015)

∗∗∗ −0.280
(0.020)

∗∗∗ −0.222
(0.024)

∗∗∗ −0.234
(0.039)

∗∗∗

# of stocks 689 115 115 229 230
# of obs 1,206,935 201,984 201,987 402,169 400,795
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Figure 2. Empirical and model-implied moments. This figure illustrates the model’s fit.
The light blue lines in the top nine plots and light blue shaded bars in the bottom three plots are
the empirical moments. The dark blue lines and dark blue bars are the model-implied moments.
Parameters are estimated with maximum likelihood. This model features slow investors who arrive at
daily, monthly, and quarterly frequencies (on average). The standard errors for the dark blue lines in
the top nine plots are shown in Internet Appendix H. The standard errors for the model-implied values
in the bottom three plots are shown in this figure. Standard errors are based on a block bootstrap
methodology as discussed in Footnote 37 and in Internet Appendix B.
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Second, our estimate of βM is 0.0082 for “All Stocks”. If γM = γF , then market makers make

up 0.82% of the ‘fast’ risk mass, while fast institutions make up the other 99.18%. If the two risk

aversion parameters are similar but not equal, we can conclude that market makers are small relative

to fast institutions. Cross-sectionally, we see the role of market makers (βM ) increases monotonically

from large-upper stocks (0.0042) to small stocks (0.0209), consistent with Hendershott and Menkveld

(2014).

The idiosyncratic component of dividend risk (σw) generally declines with firm size. For small

stocks σw=2.55% and for large-upper stocks σw=1.25%. Similarly, the sensitivity of the pricing error

to the gap process, βw, generally declines with firm size. This is consistent with trading costs being

lower in larger stocks and with results in Hendershott and Menkveld (2014).

Third, the risk-bearing capacity of fast participants (market makers plus fast institutions) is sub-

stantial. A one standard deviation shock to each slow investor class corresponds to a shock to the

fast investors target portfolios of $192 million (the sum of the µ’s).40 Weighting these shocks by the

reciprocal of their corresponding λ and multiplying the sum by βw yields a pricing error of 1.3%—i.e.,

substitute (22) into (12) and set r=0. A one standard deviation shock for large stocks is almost $500

million, with a resulting price pressure of 1.7%. For small stocks, a one standard deviation shock is

only $18 million, with a resulting price pressure of 0.8%. Comparing price pressures across size-based

sub-samples suggests that the price impact of a $1 million shock to fast investors corresponds to 0.35

basis points for large stocks and 4.4 basis points for small stocks.41

Fourth, we can measure the correlations of shocks across firms (intuitively, this correlation is

closely related to the correlation of our returns discussed earlier). Adding an additional parameter

for the shock covariance across firms to the estimation is difficult given the number of parameters

already being estimated and the smaller sample size in the bootstrap estimation (30 firms at a time

for the standard errors). However, we can calculate the shock correlation across firms implied by our

40Note that this argument relies on shocking each investor class by its standard deviation. If instead, one is interested
in a one standard deviation shock to the sum of target portfolios, then there is some diversification to be accounted for.
The relative differences across small, medium, and large stocks remain mostly unaffected as the shared components are
approximately the same size across the size-based sub-samples (see the ρ’s in Table 2).

41The pricing error for a one standard deviation shock being larger for large stocks compared to small stocks differs
from Hendershott and Menkveld (2014). As we will see in Section 4.3, most of the pricing error in this paper is due to
very persistent shocks whereas in Hendershott and Menkveld (2014) the shocks are not persistent. This difference could
cause the statistical estimation in Hendershott and Menkveld (2014) to incorrectly identify long-lived pricing errors as
permanent price changes.
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estimates. For the estimation with “All Stocks,” the shock correlation is 0.0137, though not reported

directly in the table.

Finally, note that shocks to the target holdings of slow investors correlate negatively with funda-

mental value changes (ρ = −0.223 for “All Stocks”). This negative correlation amplifies the security’s

volatility as, for example, a sudden drop in the security’s fundamental value coincides with contem-

poraneously higher target levels for slow investors and, therefore, with lower target holdings for fast

investors. In other words, fast investors want to sell their securities as fundamental values are drop-

ping. On average, the fast investors cause a negative pricing error, which adds to the price drop.

Because this shock applies equally to slow investors at all frequencies, we refer to the negative corre-

lation as a “shared component”. As discussed in Section 2.1, the shared component could arise from

fast investors having larger shocks than slow investors. Such an imbalance in shock size would then

lead to the permanent component in prices being positively correlated with the pricing error.

Figure 2 illustrates the model’s fit using “All Stocks”. We plot the empirical autocorrelations,

cross-autocorrelations, and standard deviations (same as those shown in Figure 1) as well as the

model-implied counterparts. This figure gives a visual overview of the estimation results shown in

Table 2’s first column.42

4.3 Characterization of pricing errors

The estimated model characterizes the pricing errors, their effect on returns, and how slow institutions

and retail investors contribute to them. Overall, we find pricing errors are significant and long lasting.

The upper panel of Figure 3 decomposes the steady-state pricing error variance into four compo-

nents based on (66) from Appendix E. The largest component is due to quarterly slow investors and

amounts to a standard deviation of 2.547%. Daily slow investors only contribute 0.097% to the overall

standard deviation, while monthly slow investors contribute 1.574%. The difference in contributions

stands in stark contrast to the risk masses of the three classes—the risk mass of daily investors (µd)

is much larger than the risk mass of quarterly investors (µq), as shown in Table 2. The reason for the

42The empirical returns are computed as the first difference of log prices. We therefore implicitly assume that log-price
differences are normally distributed when fitting the model. In particular, log-prices can become negative as is the case
in the model. Note further that the model’s dividend shocks correspond to log fundamental-value changes in the data.
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wedge between risk masses and contributions is that quarterly investors’ hedge shocks last 60 days,

whereas the daily investors’ shocks last only a single day. Figure 3 further shows that the shared

component in pricing errors is sizable with a 1.105% standard deviation.

The lower panel of Figure 3 illustrates the decay in pricing errors by plotting their autocorrelation

function. The plot is based on (67) from Appendix E. The lower panel clearly shows that pricing

errors are very persistent and decay only slowly over time. After a month (i.e., trading 20 days)

almost two-thirds remain. The reason is that the pricing errors are dominated by the quarterly slow

investors, as the decomposition in the upper panel clearly shows. The half-life of a pricing error shock

is just over 31 days or 6.2 weeks and can also be seen in the lower panel.

The persistence of pricing errors cause them to substantially affect daily, monthly, and quarterly

returns. Figure 4 illustrates this observation by decomposing returns into three components based on

(68) from Appendix E. Fundamental-value innovations constitute the largest component of returns

at all frequencies. Its standard deviation is 2.224%, 10.193%, and 17.655% for daily, monthly, and

quarterly returns respectively. The standard deviations of the other components range from 0.11% to

0.707% for daily returns, from 1.317% to 2.462% for monthly returns, and from 2.351% to 3.034% for

quarterly returns.

We use Figure 4 to calculate the relative contribution of pricing errors to idiosyncratic return

variance. For daily returns, we see (11.02 + 70.72)/222.42 = 9.4% indicating that pricing errors

account for 9.4% of daily idiosyncratic return variance. Similar calculations show that pricing errors

account for 7.0% and 4.5% of respective monthly and quarterly variances.

Note that the relative sizes of the legacy error reduction components represent the most salient

differences between the daily and quarterly returns. The strong error persistence reduces the amount of

pricing error eliminated over all time periods, with the impact being higher the shorter the time period.

This makes the legacy error reduction a small component in daily returns and a modest component

in quarterly returns. This feature is also the root cause for why first-order autocorrelations are more

negative for monthly returns than for daily returns in Table 1—see also the discussion in Appendix A.
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Figure 3. Pricing error magnitude and duration. The top panel of the figure illustrates
the magnitude of the pricing errors along with a decomposition across the frequencies at which slow
investors arrive (i.e., daily, monthly, and quarterly). The bottom panel of the figure shows how pricing
errors decay over time. These graphs are based on parameter estimates from Table 2, Column “All”.
The upper panel shows standard errors in parentheses and the lower panel shows 95% confidence
bands. Standard errors are based on a block bootstrap methodology as discussed in Footnote 37 and
in Internet Appendix B.
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nents (a legacy-error reduction component and a new target portfolio shocks’ component). The upper
panel illustrates the decomposition for daily return volatility; the middle panel illustrates monthly
return volatility; and the lower panel illustrates quarterly return variance. These graphs are based on
estimated parameters using “All Stocks”. Standard errors are shown in parentheses and are based on
a block bootstrap methodology as discussed in Footnote 37 and in Internet Appendix B.
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4.4 Counterfactual analysis

Our structural model allows us to conduct some counterfactual analyses. We consider two dimensions.

First, we assume the risk-aversion of all fast investors is either 1
2 or 2 times the value implied by the

structural estimation. Equation (22) shows the role risk-aversion plays in βw and the estimated values

for this parameter are shown in Table 2. Half or double the risk-aversion is implemented by adjusting

βw by halving or doubling it. These counterfactual scenarios could arise if changes to regulations (in

an attempt to influence financial stability by reducing speculation by banks and institutions) impact

the risk-aversion of fast investors in our model.

Second, we change the arrival intensities of the institutional slow investors in one of two different

ways. Case A) We assume all slow institutional investors arrive once a day (on average): µ
′
di =

µdi + µmi + µqi with µ
′
mi = 0 and µ

′
qi = 0. Case B) We assume the daily slow institutions become

fast institutions: µ
′
di = 0, while the other slow institutions remain unchanged. These changes to the

institutions’ slowness could arise from investments in technology, enabling more frequent attention.

The two cases represents the slowest institutions becoming faster and the least-slow slow institutions

becoming fast, respectively.

To quantify the effects of changing risk-aversion or risk masses, we record the fraction of pricing

errors in daily, monthly, and quarterly idiosyncratic returns (the values calculated using results shown

in Fig 4). The results of the counterfactual analysis are summarized in Figure 5.
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Figure 5. Counterfactual analysis. We report the fraction of return variance due to pricing errors
for daily returns (top panel), monthly returns (middle panel), and quarterly returns (lower panel).
The counterfactual analysis considers the fast investors’ risk aversion to either fall by 50% or double
(Columns 2 and 3). Also, we consider a scenario in which all slow institutions arrive daily on average
(Column 4) and a scenario in which daily slow institutions become fast (Column 5). Standard errors
are shown in parentheses and are based on a block bootstrap methodology as discussed in Footnote 37
and in Internet Appendix B.

Starting with the top panel in Figure 5, we see that pricing errors account for 9.4% of return

variance (“Base Case” as shown in Column 1). If the risk-aversion of the fast investors falls in half

(these investors become more risk tolerant), we see pricing errors account for only 2.5% of return

variance (Column 2). If these investors’ risk-aversion doubles, pricing errors account for 29.3% of

return variance (Column 3). The results are not surprising. As fast investors become more risk

averse, they require more compensation (larger pricing errors) in order to trade.
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We next consider all slow institutions arriving daily (on average). The net result is zero risk mass

at monthly and quarterly frequencies (µ
′
mi = 0 and µ

′
qi = 0). As can be seen in Column 4, the fraction

of return variance due to pricing errors goes to almost zero (it is 0.9% in the top panel). However, if

the daily slow institutions (only) become fast investors, the reduction in pricing errors is negligible as

Column 5 is 9.1% vs. the Column 1 value of 9.4%. We see similar patterns of results when looking at

the monthly and quarterly return variances in Figure 5, Panels 2 and 3.

The counterfactual analysis illustrates the relevance of accounting for arrival intensities of investors

when explaining price pressure. We see that the per-dollar price pressure scales with the inverse of

intensity (i.e., tending to infinity as the intensity tends to zero). For example, in our Base Case, the

risk mass of daily slow investors is 16 times larger than the risk mass of quarterly slow investors, yet

the price pressure they command in four times lower.43

5 Conclusion

We analytically solve a structural model with inattention and estimate its parameters using the dy-

namics of NYSE market-maker inventories, retail order flows, and prices. The model and trade data

enable identification and measurement of pricing errors’ role in stock return volatility. We find that

pricing errors account for 9.4%, 7.0%, and 4.5% of the respective daily, monthly, and quarterly id-

iosyncratic return variances.

Our model and empirical approach can be applied to other data from a range of investor groups

and over different time horizons. For example, even lower-frequency dynamics could be estimated

using data from very long-term investors. Such data could be obtained from public SEC filings (13F)

or private data providers such as Ancerno. Our continuous-time model can also be translated into

frequencies as high as a millisecond. Data from exchanges identifying high-frequency traders could

therefore also be incorporated into our approach to examine these traders’ roles in correcting or

possibly causing pricing errors. An important component of extending our approach to other samples

is to identify and measure market-maker inventories.

43The corresponding calculations are from the “All Stocks” column in Table 2: (151 + 1.63) / ( 7.76 + 2.03 ) = 16.
Next we see: 16×

(
1
63

)
= 0.25. Here, a calendar quarter consists of 63 days.
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In the future, it may also be possible to add informational frictions to our model. These frictions

could potentially help quantify the role attention plays in prices slowly adjusting to new information.

Data sources on public news could also be incorporated to measure how attention varies with both

market conditions and the arrival of information. At the lowest frequencies, macroeconomic variables

could be added to study how they impact the duration of pricing errors. Finally, a more comprehensive

understanding of stock return patterns could combine overreaction from the inattention and risk

sharing (as in this paper) with potential under-reaction in stock returns from endogenous information

acquisition—see Sims (2003) and Van Nieuwerburgh and Veldkamp (2009).44 These extensions provide

examples of potentially important future work.

44Trading by informed traders causes permanent price changes. If these traders acquire information over time, prices
may adjust slowly. Generally, trading by those without information, such as studied in our paper, has no permanent
price impact. Rather, it only has a transitory price impact.

39



A Pricing error persistence and return autocorrelation

This section explores how pricing errors relate to return autocorrelations. If the first-order autocorrelation of
returns is highly negative, then pricing errors must be large relative to fundamental value changes. However,
the reverse need not be true. If pricing errors are persistent then they can be relatively large while short horizon
return autocorrelations can be small. This may explain why pricing errors have largely been overlooked in the
literature. Daily return autocorrelations are typically small and one might (erroneously) conclude that pricing
errors can safely be ignored. Our paper shows that such errors are economically large for actively traded U.S.
equities.

To examine pricing errors assume that daily (log) prices, say mid-quotes, consist of two unobserved compo-
nents: a martingale mt plus an error term st. The first-order autocovariance of daily returns is

cov (wt + st − st−1, wt−1 + st−1 − st−2) = − (1 + ρs,2 − 2ρs,1)σ2
s < 0, (29)

where wt is the martingale innovation and ρs,i is the ith order autocorrelation in the pricing error st. Assuming
that wt and st are uncorrelated yields the following expression for return variance:

var (wt + st − st−1) = σ2
w + 2 (1− ρs,1)σ2

s . (30)

The first-order autocorrelation of daily returns is therefore

ρr,1 = − (1 + ρs,2 − 2ρs,1)σ2
s

σ2
w + 2 (1− ρs,1)σ2

s

. (31)

Case A: Pricing errors are uncorrelated across days. If pricing errors are not persistent (ρs,1 = ρs,2 = 0),
then the first-order autocorrelation in (31) becomes

ρr,1 = − σ2
s

σ2
w + 2σ2

s

. (32)

When pricing errors are large relative to fundamental-value innovations, the first-order return autocorrelation
is large and negative. When pricing errors are small relative to fundamental-value innovations (σ2

s is small
relative to σ2

w), the above expression is small, negative, and approximately equal to minus the ratio of σ2
s to

σ2
w. Finally, note that the pricing errors’ relative size diminishes as one downsamples the data from a daily to,

say, monthly frequency. To understand the effects of daily-to-monthly downsampling, notice that when σ2
s is

small relative to σ2
w, the denominator in (32) increases by a factor of 20 (approximately) while the numerator

remains unchanged. This implies that downsampling makes the first-order return autocorrelations less negative
the lower the sampling frequency.

The first-order autocorrelations of returns in Table 1 shows that the autocorrelation is more negative at
a monthly frequency than at a daily frequency. The above downsampling logic demonstrates that empirical
return autocorrelations are inconsistent with pricing errors being uncorrelated across days.

Case B: Pricing errors are correlated across days. Persistent pricing errors are difficult to detect in
first-order return autocorrelations. This is perhaps best seen by considering the following limit:45

lim
ρs,2↑1

ρr,1 = 0. (33)

This limit shows that as pricing errors become persistent enough the first-order return autocorrelation ap-
proaches zero. Essentially, the pricing error begins to resemble a martingale so returns become uncorrelated.

How does pricing-error persistence affect return autocorrelations at different sampling frequencies? Down-
sampling mechanically reduces pricing error persistence, which can help disentangle longer-lived pricing errors

45Formally showing this limit requires additional assumptions about pricing error process, e.g., its variance must
remain finite.
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from the martingale component of prices. For example, shocks to pricing errors might live for several days
causing high persistence at a daily frequency. If the shocks largely die out at longer (monthly) frequencies, the
pricing errors sampled at such frequencies exhibit only moderate persistence. Downsampling therefore guar-
antees that at some point first-order return autocorrelations becomes substantially negative again. Therefore,
pricing-error persistence can make these autocorrelations more negative at lower frequencies: the derivative of
ρr,1 with respect to the sampling horizon can be negative.

We illustrate how this line of reasoning can generate the empirical patterns shown in Table 1. Let (daily)
pricing errors decay exponentially with intensity 1/20 so that the expected duration is a month. Let both
their (unconditional) standard deviation and the daily martingale innovation be 1%. Then simply applying
(31) yields a first-order autocorrelation in daily returns of −0.01. This autocorrelation is however −0.05 when
computed for monthly returns. These autocorrelations (−0.01 and −0.05) are quite close to those for the U.S.
stock market data in Table 1. In our model, the slowly decaying pricing errors are generated by some inattentive
investors who only participate in the market once a month on average.
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B Notation summary

This appendix summarizes the notation used throughout our paper. We first describe the model’s variables and
parameters, next the data series, and finally the estimated parameters.

Variable Description

∆t The period length implied by the sampling frequency.
εt Vector with all the model’s shocks in the period from t−∆t to t.
Gt The gap between target and actual portfolio aggregated across all investors.
λi Poisson arrival intensity for investor class i ∈ {d,m, q}.

Note on subscripts: “d” daily; “m” monthly; “q” quarterly;
Λk Diagonal matrix with the intensities of investor class k ∈ {i, r} on the diagonal.
m Mass of investors.
r Risk-free rate.
σ Per-investor shock in target portfolio.
Yt State vector that stacks all the model’s unobserved and observed variables.

Data Description

MMInvt Market makers’ inventory at time t.
RetFlowt Retail investor order flow in the period from t−∆t to t.
Returnt Asset’s idiosyncratic (mid-quote) return in the period from t−∆t to t.

The twelve
estimated

parameters Description

βw Asset’s fundamental-value risk relative to total risk-absorption capacity
(i.e., market makers’ plus fast investors).

βM Market makers’ risk-absorption capacity relative to total capacity
(i.e., market makers’ plus fast investors).

µj,l The size of the total target portfolio shock aggregated across all slow
investors of class j ∈ {i, r} and frequency l ∈ {d,m, q}.
Note 1: There are six µj,l variables.
Note 2: µ := mσ is the mass of investors times average per-investor shock size.
Note 3: “i” institutional; “r” retail.
Note 4: “d” daily; “m” monthly; “q” quarterly;

ρ Correlation of all slow investors target portfolio shocks and the
asset’s fundamental-value change.

σw Asset’s fundamental risk (i.e., standard deviation of the asset’s
fundamental-value changes).

σeM Daily noise in market-maker inventories.
σer Daily noise in retail order flow.
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C Imbalanced shocks: Their correlation with balanced shocks and
returns

This appendix illustrates permanent price dynamics46 that can result from non-zero sum (or imbalanced) shocks
to investors’ target portfolios. Crucially, below we assume that permanent price changes are linear in imbalanced
shocks. Permanent price dynamics may arise even if all investors are (always) attentive and present to trade.
Therefore, for ease of illustration, assume only two classes of investors and that both classes are fast/attentive.
In this setting there is no need for market makers. For consistency with the model in the body of the paper,
we use the same labels for the different classes of traders:

• Class 1 of traders (indexed n)

• Class 2 of traders (indexed F )

There are two (possibly correlated) Brownian motions:

• Zt represents “balanced” shocks as in (equation reference in main text).

• It represents “imbalanced” shocks (new process in this appendix) .

The imbalanced shock is distributed across the investors’ target portfolios by the function f(It):

Tn,t = σnZt + (1− f(It))It

TF,t = −mn

mF
σnZt +

mn

mF
f(It)It

Note: If It = 0 ∀ t (no permanent imbalance) then the sum of the target portfolios is zero, as in the body of
the paper, with: mFTF,t +mnTn,t = 0.

For the market to clear, investors must be willing to deviate from the above target portfolios conditional on
price. In Proposition 1, the fast investors’ holdings deviate from their target portfolio as a linear function of
price. Using that same functional form here, investors’ holdings (conditional on price) are given by downward
sloping functions (of price). Note that we are using a lower case p to denote the permanent component of price:

πn,t = Tn,t − anpt

πF,t = TF,t − aF pt

Then by market clearing:

mnπn,t +mFπF,t =

mnIt − (anmn + aFmF )pt = 0

⇒ pt =
mn

anmn + aFmF
It

46We use the term “permanent price dynamics” as shorthand for the price process purged of all pricing errors (i.e., it
is the accumulation of permanent price changes).
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Thus, market clearing implies that if optimal holdings are linear in price, then price is linear in It.

The permanent price with dividends in body of the paper is ppt = σwBt. Given that Bt and It are both Brownian
motions, setting σw = mn

anmn+aFmF
yields an equivalent permanent price process due to dividends or imbalanced

shocks: ppt = pt.

Additionally, using the same equivalence between Bt and It and assuming Bt and It both have the same
correlation ρ with Zt yields:

Corr (dZt,dBt) = Corr (dZt,dp
p
t ) = ρ = Corr (dZt,dpt) = Corr (dZt,dIt) .

Thus, imbalanced shocks can yield a permanent price process that is equivalent to the with-dividend permanent
price process in the body of the paper. In addition, if the correlation between the imbalanced and balanced
shocks is the same as the correlation between the balanced shocks and the dividend process in the main paper,
then the correlation between the balanced shocks and the changes in the ‘imbalanced’ permanent price process
and the ‘dividend’ permanent price process is the same. Overall, our example illustrates how imbalanced shocks
can generate correlations between the balanced shock process and returns as found in the body of the paper.

It is important to note that the above intuition relies on the assumption that the permanent price process is
linear in the imbalanced shocks. While the temporary price process is a linear function as shown in Proposition 1,
it is unlikely the permanent price would be linear in equilibrium. Price being linear allows us to use the Kalman
filter to compute the exact likelihood function when structurally estimating the model. Hence, in the main text
we solve the model with ρ, which has linear prices as opposed to the model with imbalanced shocks.
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D Limited-attention model and its equilibrium

D.1 Equilibrium structure

Our approach to solve for an equilibrium is to “guess and verify”. Concretely, we assume a certain functional
form, or ansatz, for the equilibrium price process of the risky asset. Several parameters in the ansatz are
assumed to be known by the agents but are, at first, left unspecified. In Section D.2 (below) we solve for the
optimal individual policies taking the ansatz as given. In Section D.3 we pin down the unspecified parameters
by imposing market clearing. If a choice of parameters in the ansatz allows the equilibrium conditions to hold,
the ansatz is shown to be ex-post rational.

We turn to a description of our ansatz. The equilibrium behavior of our economy is driven by the “gap
process.” We make three assumptions regarding the equilibrium structure. Existence and uniqueness of equi-
librium, shown below, then prove these assumptions to be rational.

First, we assume that the gap process follows a multi-dimensional Ornstein-Uhlenbeck process.

Assumption 1 (Ornstein-Uhlenbeck). The dynamics of the gap process is

dGt = −ΛGtdt+ σGdZt (34)

for a mean-reversion speed Λ ∈ RN×N and a diffusion matrix σG ∈ RN×N .

In equilibrium, the mean-reversion speed in (34) is the diagonal matrix of attention intensities. This is
shown in the proof of Proposition 2 below. To avoid verbosity we, however, already use the notation Λ for the
mean-reversion speed.

Second, we assume that the price Pt of the risky asset is linear in the components of the gap process.

Assumption 2 (Linear Equilibrium). The price of the risky asset satisfies

Pt := −p>Gt (35)

for a vector p ∈ RN .

Finally, we assume the following for the information structure.

Assumption 3 (Gap is public information). All investors know the current value of the gap process when they
make portfolio decisions.

As our analysis focuses on risk-sharing, it is natural to abstract from other economic mechanisms, including
asymmetric information. Assumption 3 makes all investors have the same expectations regarding risky returns.
Without Assumption 3 investors would have to filter the current value of the gap process and investors in
different classes would reach different estimates. This filtering would only obscure the risk-sharing mechanisms.

D.2 Individual problems

In this subsection, we characterize the optimal policies of all investors conditional on the assumptions of Sec-
tion D.1 regarding the equilibrium structure.
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Fast investors. A fast investor i chooses its policy at t to solve

max
C,π

Et

[∫ ∞
t

e−r(u−t)
(

dCu −
rγFσ

2
w

2
(TF,u − πi,u)

2
du

)]
, (36)

with admissible strategies (C, π) satisfying three conditions. First, the consumption C, the risky holdings π,
and the wealth w satisfy the budget constraint:

dwt = rwtdt− dCt + πt(dDt + dPt − rPtdt). (37)

Second, to prevent infinite financing of consumption with debt, the no-Ponzi condition

lim
T→∞

e−r(T−t) Et (wT ) = 0 (38)

must hold for any time t > 0. Third, to prevent so-called doubling strategies, the regularity condition

Et

(∫ T

t

π2
sds

)
< +∞ (39)

holds for any t < T . Finally, the expectation Et[·] in (36) is conditional on the current target portfolio TI,t and
wealth wt of the institution, along with the current value Gt of the gap process.

Market makers. A market maker i chooses its policy at t to solve

max
C,π

Et

[∫ ∞
t

e−r(u−t)
(

dCu +−rγMσ
2
w

2
(πi,u)

2
du

)]
. (40)

Just like fast investors, a policy (C, π) is admissible for a market maker if it satisfies the budget constraint (37),
the no-Ponzi condition (38), and the regularity condition (39).

Lemma 1 (Holdings). We have the following three expressions:

• A market maker holds πM,t shares of the risky asset where p ∈ RN and IN is the identity matrix in
RN×N :

πM,t =
1

rγMσ2
w

[
1

dt
Et (dPt)− rPt

]
=

1

rγMσ2
w

[
p> (rIN + Λ)Gt

]
(41)

• A fast institution holds πF,t shares of the risky asset:

πF,t = TF,t +
1

rγFσ2
w

[
p> (rIN + Λ)Gt

]
(42)

• A slow investor of class j who arrives at the market at time t holds πj,t shares:

πj,t = Tj,t. (43)

Proof of Lemma 1. A time t = 0 a fast investor i maximizes

E0

[∫ +∞

0

e−ru
(

dC̃u −
rγFσ

2
w

2
(TF,u − π̃i,u)

2
du

)]
(44)
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over the admissible strategies (C̃, π̃). A strategy is admissible if it satisfies a budget constraint, a no-Ponzi
condition, and a certain regularity condition.47

By combining the budget constraint

dw̃u = rw̃udu− dC̃u + π̃i,u (dPu − rPudu) (45)

and Itô’s product rule, we can rewrite the discounted incremental consumption as

e−rudC̃u = e−ruπ̃u (dPu − rPudu)− d
(
e−ruw̃u

)
. (46)

Then, by using the no-Ponzi
lim
T→∞

E
[
e−rT w̃T

]
= 0, (47)

and by injecting (46) into (44), we can rewrite the objective function of our investor as

E0

[∫ +∞

0

e−ru
(

dC̃u −
rγFσ

2
w

2
(TF,u − π̃i,u)

2
du

)]
= w0 + E0

[∫ +∞

0

e−ru
(
π̃i,u (dPu − rPudu)− rγFσ

2
w

2
(TF,u − π̃i,u)

2
du

)]
= w0 + E0

[∫ +∞

0

e−ru
(
π̃i,u Eu [dPu − rPudu]− rγFσ

2
w

2
(TF,u − π̃i,u)

2
du

)]
= w0 + E0

[∫ +∞

0

e−ru
(
π̃i,up

> (rIn + Λ)Gu −
rγFσ

2
w

2
(TF,u − π̃i,u)

2
du

)]
,

(48)

where we used the law of iterated expectations for the second equality and the Assumptions 1 and 2 for the
third equality. In particular, any admissible consumption plan C̃ is equally good for our investor.

Let us now consider the unique pointwise maximizer πi,u of the term between the parentheses in the last
line of (48):

πi,u = TF,u +
1

rγFσ2
w

p> (rIN + Λ)Gu. (49)

As inspection shows, this unique maximizer defines an admissible strategy and, as measured by (44), no other
admissible strategy is better than the strategy defined by (49). In particular, (49) is the optimal trading strategy
for our investor, as stated in the proposition.

The argument for a market maker is identical, up to the target portfolio being 0 at all times.

D.3 Equilibrium: Holdings and price

Our equilibrium definition is standard and combines individual optimality with market clearing for the risky
asset.

Definition 1 (Equilibrium). An equilibrium consists of policies {πi}i∈{I,M}∪N giving the risky holdings of all
classes of investors, parameters Λ and σG defining the dynamics of the gap process as in Assumption 1, and a
vector p defining the price of the risky asset as in Assumption 2.

These quantities satisfy three conditions.

47The use of a tilde ( ·̃ ) denotes any given admissible strategy (e.g., π̃ as any admissible trading strategy), whereas
the notation without a tilde denotes its optimal counterpart (e.g., π).
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(i) Individual optimality : The policies {πi}i∈{I,M}∪N are given by Proposition 1 with the parameters of the
gap process being set at their equilibrium values.

(ii) Market clearing:
mFπF,t +mMπM,t + 1(1×N)diag (m1, . . . ,mN )πN,t ≡ 0, (50)

with πN,t := (πi,t)
N
i=1.

Lemma 2 (Price). An equilibrium exists and is unique. The gap process follows an Ornstein-Uhlenbeck process:

dGt = −ΛGtdt+ diag (µ1, . . . , µN ) dZt, (51)

where µj := mjσj is the total “risk mass” of investors in class j. The equilibrium price of the risky asset is

Pt = −p>Gt with p> =
σ2
w

mF
rγF

+ mM
rγM

1(1×N) (rIN + Λ)
−1
. (52)

The equilibrium price process determines the dynamics of the trading policies shown in Proposition 1 with
the row vector of weights, p>, being explicit in (52).

Proof of Lemma 2. The inelastic demand of all slow investors, the definition of the gap process, and a
heuristic application of a cross-sectional strong law of large numbers (SLLN) yields the dynamics

dGt = −ΛGtdt+ diag (µ1, . . . , µN ) dZt (53)

for the gap process.48

We must still make sure that the assumed price process

Pt = −p>Gt (54)

is consistent with market clearing. Concretely, market clearing at time t amounts to

mMπM,t +mFπF,t + 1(1×N)At = 0⇔
((

mM

rγMσ2
w

+
mF

rγFσ2
w

)
p> (rIN + Λ)− 1(1×N)

)
Gt = 0, (55)

where we used Proposition 1, the definition TF,t in (6), and the definition of Gt in (9). As market clearing holds
at any point in time and any state of the world in equilibrium, the price sensitivities p must be

p> =
σ2
w

mM
rγM

+ mF
rγF

1(1×N) (rIN + Λ)
−1
, (56)

as stated in the proposition.

48See, for example, Judd (1985) and Sun (2006) for rigorous discussions of cross-sectional SLLNs.
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D.4 Proof of Proposition 1

We combine the results from Lemma 1 and its associated proof in Section D.2 with the results from Lemma 2
and its associated proof in Section D.3. The result proves Proposition 1 from the main paper.
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E Model-implied discrete-time dynamics

In this appendix, we provide additional details on the components of the model implied dynamics given in (20).
The model moments calculated in Section 3.1 can be obtained using the full model dynamics by setting ρ = 0
and using the scalar λ in place of the matrix Λ. The VAR in (20) includes the coefficient matrix V discussed
and given in the main text in (21). This incorporates the autoregressive component of the model dynamics.

Below, we provide details related to the shocks. This includes the variance and covariance of the shocks,
as well as the coefficient matrix W that maps the shocks into the model’s variables. Finally, we also provide
analysis on the pricing errors and returns for the full model.

The coefficient matrix W is:

W =



3 3 1 3 3

3 I3 0 0 0 0
3 0 I3 0 0 0
1 βM1(1×3) βM1(1×3) 0 0 0
1 0 −1(1×3) 0 0 1(1×3)

1 −βw1(1×3)Bi −βw1(1×3)Br 1 0 0

 ∈ R9×13, (57)

with Bj = (rI3 + Λj)
−1

and j ∈ {i, r}. The intuition for the elements in W follows immediately from the
discussion of the corresponding elements in V (see previous paragraphs). The only difference is that W pertains
to new shocks in target portfolios (and not to changes in legacy inefficient holdings).

The error term is:
εt =

(
ε1,t ε2,t ε3,t

)>
, (58)

where ε1,t ∈ R6 captures the net change in the gap process and ε3,t ∈ R6 captures the change in target portfolios.
Note that these are highly correlated but not identical. Only part of the target portfolio change enters the gap
process because of intra-period trading. ε2,t captures the dividend shock. The covariance matrix of εt is:

Var (ε1,t) =

∫ ∆t

0

e−Λ(∆t−u)
( Idiosyncratic

shocks︷ ︸︸ ︷(
1− ρ2

)
diag2 (µ) +

Common
(shared)
shocks︷ ︸︸ ︷
ρ2µµ>

)(
e−Λ(∆t−u)

)>
du, (59)

Var (ε2,t) = σ2
w∆t,

Var (ε3,t) =
((

1− ρ2
)

diag2 (µ) + ρ2µµ>
)

∆t,

Cov (ε1,t, ε2,t) =

∫ ∆t

0

e−Λ(∆t−u)ρµσwdu,

Cov (ε1,t, ε3,t) =

∫ ∆t

0

e−Λ(∆t−u)
((

1− ρ2
)

diag2 (µ) + ρ2µµ>
)

du,

Cov (ε2,t, ε3,t) = ρσwµ
>∆t,

where ρ is the correlation between the dividend shock and infrequent investors’ target portfolio shocks.49

49Note that element (i, j) from Var (ε1,t) is
µ2
i

2Λii

(
1− e−2Λii∆t

)
for i = j. This element is

ρ2µiµj
Λii+Λjj

(
1− e−(Λii+Λjj)∆t

)
for i 6= j.
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Let Ṽ be the sub-matrix of V consisting of only the non-zero columns:

Ṽ = V(.,1:6), (60)

where the subscript indicates the rows and columns that are selected with a dot used to select them all (above,
Ṽ has selected all the rows and the first six columns of V ). Then (20) can then be written as:

Yt = Ṽ Gt−∆t +Wεt. (61)

Model-implied covariance and auto-covariance matrices. The variance matrix for the gap process
Gt is easily derived by taking ∆t to infinity for Var (ε1,t) in (59). The result is twice the variance of the gap
process (i.e., Var (Gt −Gt−∆t) = Var (Gt) + Var (Gt−∆t)− 2 Cov (Gt, Gt−∆t) where the last terms vanishes for
∆t ↑ ∞). Let

Var (Gt) =
( Idiosyncratic

shocks︷ ︸︸ ︷(
1− ρ2

)
diag2 (µ) +

Common
(shared)
shocks︷ ︸︸ ︷
ρ2µµ>

)
◦
(

(Λkk + Λll)
−1
)

0≤k,l≤6
(62)

where ◦ is the Hadamard product (i.e., element-wise product).

The simple first-order autoregressive structure of Yt implies that its variance is:

Var (Yt) = Ṽ Var (Gt) Ṽ
> +W Var (εt)W

> (63)

and its auto-covariance of order n > 0 is:

Cov (Yt, Yt−n) = Ṽ e−(n−1)Λ∆t


Var (Gt)

Cov (Gt,MMInvt)
Cov (Gt,RetFlowt)
Cov (Gt,Returnt)


>

. (64)

The autocovariance function in (64) shows that, not surprisingly, all decay is governed by the individual gap
components (in e−(n−1)Λ∆t). The decay could, however, still be different for different variable pairs,50 as they
load differently on the gap components (governed by Ṽ ).

Characterizing pricing errors and returns. The model-implied variance and auto-covariances can
be used to develop several additional results that generate further economic insight. One particularly useful
result is that the estimation delivers a full characterization of the pricing errors, their size, a decomposition,
and their decay. To generate these results, let us first define the pricing error at time t as:

st = W(9,1:6)Gt ∈ R. (65)

Its variance therefore is:
Var (st) = W(9,1:6) Var (Gt)W

>
(9,1:6). (66)

The structure of Var (Gt) admits a decomposition of pricing error variance into idiosyncratic components
associated with the various slow-investor classes and frequencies and a common factor correlated with the
fundamental-value shock. Such a decomposition immediately follows from the structure of Var (Gt) in (62).
The autocorrelation function for pricing errors (st) that defines their decay follows from the autocovariance

50For example, one could compare the decay (for increasing n) of (MMInvt,RetFlowt−n) and (MMInvt,Returnt−n).
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function of Gt:

ρs,1 =
W(9,.)e

−Λ∆t Var (Gt)W
>
(9,.)

W(9,.) Var (Gt)W>(9,.)
. (67)

An alternative way to characterize the persistence of pricing errors is to compute their half life. This is most
easily done by looking at the bottom panel in Fig 3. The downward line crosses the 0.5-level after 31 (trading)
days or 6.2 weeks.

Another useful result is to compute the extent to which returns are “polluted” by pricing errors. More
specifically, we want to know how different components of the pricing errors affect returns. The variance of
returns follows immediately from (63):

Var (rt) =

Legacy error reduction︷ ︸︸ ︷
Ṽ(9,.) Var (Gt) Ṽ

>
(9,.) +

New shocks︷ ︸︸ ︷
W(9,.) Var (ε)W>(9,.) . (68)

where the “new shocks” component can be further decomposed into:

• A fundamental-value change component corresponding to Var (ε)(7,7),

• New idiosyncratic target shock components corresponding to the diagonal of Var (ε)(1:6,1:6), and a

• New shared component (correlated with fundamental-value change) corresponding to all off-diagonals of
Var (ε)(1:7,1:7).

The return autocorrelations follow immediately from (64) as the risky asset’s return is the last element of Yt—see
(19).
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